Cho các số thực a1,a2,..,an.Gọi a=(a1+...+an)/n.Chứng minh ít nhất một trong các số a1,a2,...,an lớn hơn hoặc bằng a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử m là đường thẳng song song với b và cắt qua a. Vì m song song với b mà b song song với a nên m cũng song song với a ( vô lí ) Vậy m không song song với b tức m cắt b
Ta có \(n^2+6n+20⋮11\Rightarrow\left(n^2+2\cdot3\cdot n+3^2\right)+11⋮11\Rightarrow\left(n+3\right)^2+11⋮11\)
\(\Rightarrow\left(n+3\right)^2⋮11\). Mặt khác \(11\)chính là số nguyên tố . Do đó \(\left(n+3\right)^2\)cũng chia hết cho \(11^2\)
Tức là \(\left(n+3\right)^2⋮121\Rightarrow n^2+6n+9⋮121\)Mà \(11\)khong chia hết cho \(121\)Nên \(n^2+6n+9+11⋮̸121\Rightarrow n^2+6n+20⋮̸121\)
. \(\left(n+3\right)^2⋮11\Rightarrow\left(n+3\right)^2⋮121\).Đó là theo một công thức nhé bạn cho a^2 chia hết cho b mà b là số nguyên tố nên a^2 chia hết cho b^2. Cách chứng minh ở trên mạng bạn lên đấy kiếm nhé
TA THẤY: \(n^2+6n+20=\left(n^2+6n+9\right)+11=\left(n+3\right)^2+11\)
nên \(n^2+6n+20\)không là số chính phương
Mà \(\left(n^2+6n+20\right)⋮11\)
\(\Rightarrow\left(n^2+6n+20\right)\)không chia hết cho \(11^2\)
Vậy \(n^2+6n+20\)không chia hết cho 121 (ĐPCM)
Trường Ngoại Ngữ ICES
ICES là một trung tâm Anh ngữ có tên tuổi tại quận 7. Trung tâm ICES có nhiều khóa học đa dạng, nhất là các khóa tập trung phát triển nền tảng Anh ngữ của thiếu nhi và thiếu niên. Trung tâm anh ngữ ICES thường xuyên khai giảng các khóa học tiếng anh thiếu nhi và tiếng anh thiếu niên đó bạn @ThaoGemChu
Trung tâm ngoại ngữ ICES có địa chỉ tại số 24 Đường 37, Khu Dân Cư Tân Qui Đông, Phường Tân Phong, Quận 7, Thành phố Hồ Chí Minh, Việt Nam.
Tel: 091.333.5202 - 091.333.5203
Lần sau em đăng trong link: h.vn để đc các bạn giúp đỡ nhé!
1. ĐK x >1
pt \(\Leftrightarrow\frac{1}{\sqrt{x}-\sqrt{x-1}}\left(m\sqrt{x}+\frac{1}{\sqrt{x-1}}-16\sqrt[4]{\frac{x^3}{x-1}}\right)=1\)
\(\Leftrightarrow m\sqrt{x}+\frac{1}{\sqrt{x-1}}-16\sqrt[4]{\frac{x^3}{x-1}}=\sqrt{x}-\sqrt{x-1}\)
\(\Leftrightarrow m\sqrt{x\left(x-1\right)}+1-16\sqrt[4]{x^3\left(x-1\right)}=\sqrt{x\left(x-1\right)}-x+1\)
\(\Leftrightarrow\left(m-1\right)\sqrt{x\left(x-1\right)}-16\sqrt[4]{x^3\left(x-1\right)}+x=0\)
\(\Leftrightarrow\left(m-1\right)\sqrt{\frac{x-1}{x}}-16\sqrt[4]{\frac{x-1}{x}}+1=0\)
Đặt rồi đưa về phương trình bậc 2: \(\left(m-1\right)t^2-16t+1=0\)
2. ĐK:...
\(\sqrt{x-4-2\sqrt{x-4}+1}+\sqrt{x-4-2.\sqrt{x-4}.3+9}=m\)
\(\Leftrightarrow\left|\sqrt{x-4}-1\right|+\left|\sqrt{x-4}-3\right|=m\)Tìm m để pt có đúng 2 nghiệm. Tự làm nhé!
\(3.\) ĐK:...
Đặt: \(\left(x^2-3x-4\right)=a\)
\(\sqrt{x+7}=b\)
Ta có: \(ab-m\left(a-b\right)-m^2=0\Leftrightarrow m^2+m\left(a-b\right)-ab=0\)
\(\Delta=\left(a-b\right)^2+4ab=\left(a+b\right)^2\)
pt có 2 nghiệm : \(\orbr{\begin{cases}m=\frac{b-a-\left(a+b\right)}{2}=-a\\m=\frac{b-a+\left(a+b\right)}{2}=b\end{cases}}\)
Khi đó: \(\orbr{\begin{cases}m=-\left(x^2-3x-4\right)\\m=\sqrt{x+7}\end{cases}}\)
pt <=> \(\left(m+x^2-3x-4\right)\left(m-\sqrt{x+7}\right)=0\)Tìm m để pt có nhiều nghiệm nhất .
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Meeeeeeeeeeeeeeeeeeeeeee!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Tớ không vẽ hình được bạn tự vẽ nhé
a, Vì K thuộc đường tròn đường kính AB
=> AKB=90
Mà CHA=90
=> tứ giác AKNH nội tiếp
Vậy tứ giác AKNH nội tiếp
b,Vì 2 tiếp tuyến cắt nhau tại M
nên \(OM\perp AC\)
=>\(OM//CB\)
=> tam giác AMO đồng dạng tam giác HCB
=> ĐPCM
c, Tứ giác AMKI nội tiếp do AIM=AKM=90
KIC=AMK
MÀ AMK=KNC do AM song song CH
=> KIC=KNC
=> tứ giác KINC nội tiếp
=>KNI=KCI
Mà KCI=KBA
=> KNI=KBA
=> IN song song AB
Vậy IN song song AB
Mình không viết kí hiệu góc nên bạn thông cảm
Bài này đơn giản mà bạn
Giả sử rằng trong các số \(a_1;a_2;...;a_n\)không có số nào lớn hơn hoặc bằng a khi đó \(a_1+a_2+...+a_n< a+a+...+a\)(n số hạng a )
\(\Rightarrow a_1+a_2+a_3+...+a_n< a\cdot n\left(1\right)\)
Mặt khác theo như giả thuyết ta có \(a=\frac{a_1+a_2+...+a_n}{n}\Rightarrow a\cdot n=a_1+a_2+...+a_n\left(2\right)\)
Ta thấy điều (1) và (2) trái ngược nhau nên điều giải sử lúc ban đầu là sai.
Vậy trong các số trên sẽ có ít nhất một số lớn hơn hoặc bằng a