K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2016

\(a,16x-5x^2-3\)

\(=-5x^2+15x+x-3\)

\(=-5x\left(x-3\right)+\left(x-3\right)\)

\(=\left(x-3\right)\left(-5x+1\right)\)

\(b,x^2-4x-5\)

\(=x^2+x-5x-5\)

\(=x\left(x+1\right)-5\left(x+1\right)\)

\(=\left(x+1\right)\left(x-5\right)\)

27 tháng 7 2018

x2 - 4x - 5

= x2 - x + 5x - 5

= x ( x - 1 ) + 5 ( x - 1 )

= ( x - 1 ) ( x + 5 )

30 tháng 10 2016

a+b+c=1

=>a^1+b^1+c^1=1

mà a^3 + b^3 +c^3=1

=> a^2005 + b^2005 + c^2005=1

 phân tích đa thức sau thành nhân tử:(x + y + z)3 -- x3 -- y3 -- z3giải. * Chú ý. Sử dụng (x + y)3 = x3 + y3 + 3xy.(x+y). THAY: (x + y + z)3 = (x + y)3 + z3 + 3(x + y + z)(x + y).z, Ta được:(x + y + z)3 -- x3 -- y3 -- z3 = (x + y)3 -- x3 -- y3 + 3.(x+y+z)(x+y).z                                       = 3xy.(x + y) + 3.(x+ y + z).(x + y).z                                       = 3.(x + y).(xy + xz + yz + z2)                                        = 3.(x + y)(x + z)(y + z)....
Đọc tiếp

 

phân tích đa thức sau thành nhân tử:

(x + y + z)3 -- x3 -- y3 -- z3

giải. * Chú ý. Sử dụng (x + y)3 = x+ y3 + 3xy.(x+y). THAY: (x + y + z)3 = (x + y)3 + z3 + 3(x + y + z)(x + y).z, Ta được:

(x + y + z)3 -- x3 -- y3 -- z= (x + y)3 -- x3 -- y3 + 3.(x+y+z)(x+y).z

                                       = 3xy.(x + y) + 3.(x+ y + z).(x + y).z

                                       = 3.(x + y).(xy + xz + yz + z2

                                       = 3.(x + y)(x + z)(y + z).  

a) Cô ơi, theo công thức : (x + y + z)3 = (x + y)3 + z3 + 3(x + y + z)(x + y).z 

   thì mình phải thay cụm này <  trong đề bài:  (x + y + z)3 -- x3 -- y3 -- z3    > : (x + y + z)bằng: (x + y)3 + z3 + 3(x + y + z)(x + y).z

   nhưng sao trong lời giải người ta thêm là: --- x3 --- y3 là từ đâu có vậy cô? cô giải thích chi tiết, dễ hiểu giúp em nhe cô. em cám ơn    cô.

b) Cô ơi! 

 Cô ơi, cô trình bày chi tiết các bước làm như thế nào để từ dòng này: = 3xy.(x + y) + 3.(x+ y + z).(x + y).z Thành dòng này: 

3.(x+y).(xy + xz + yz + z2) và từ dòng này ( 3.(x + y).(xy + xz + yz + z2)  ) thành dòng này 3.(x + y)(x + z)(y + z). nhe cô? em cám ơn cô nhiều nhe cô :)

2
30 tháng 10 2016

thêm bớt hạng tử ý mà cậu nhân ra sẽ biết thôi

k mk nha

10 tháng 6 2018

a, x^4 - 5x^2 + 4

= x^4 - 4x^2- x+ 4

= x^2  . (x^2 - 4) - (x^2 - 4)

= (x^2 - 4) . (x^2 - 1)

= (x - 2) . (x + 2) . (x - 1) . (x + 1)

30 tháng 10 2016

đề là cái gì 

30 tháng 10 2016

Em k bt đè nên k giải đc sorry Tìm cách khác nhé chúc anh(chị) hok giỏi

31 tháng 10 2016

Ta có :

\(\left(x+y+z\right)^3=1^3=1\)

Có : \(\left(x+y+z\right)^3-x^3-y^3-z^3=1-1\)

\(\Rightarrow\left[\left(x+y+z\right)-x\right]\left[\left(x+y+z\right)^2+x^2+x\left(x+y+z\right)\right]-\left(y+z\right)\left(y^2+z^2-yz\right)=0\)

\(\Rightarrow\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz\right]-\left(y+z\right)\left(y^2+z^2-yz\right)=0\)

\(\Rightarrow\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz-y^2-z^2+yz\right]=0\)

\(\Rightarrow\left(y+z\right)\left[3x^2+3xy+3yz+3xz\right]=0\)

\(\Rightarrow3\left(y+z\right)\left(x+z\right)\left(x+y\right)=0\)

\(\Rightarrow\)y+z=0 hoặc x+z=0 hoặc x+y=0

Có : \(A=x^{2015}+y^{2015}+z^{2015}\)

\(=x^{2015}+\left(y+z\right)\left(y^{2014}-y^{2013}z+...+z^{2014}\right)\)

\(=y^{2015}+\left(x+z\right)\left(x^{2014}-x^{2013}z+...+z^{2014}\right)\)

\(=z^{2015}+\left(x+y\right)\left(x^{2014}-x^{2013}y+...+y^{2014}\right)\)

Với \(x+y=0\Rightarrow z=1\Rightarrow A=1+0=1\)

Tương tự với \(y+z=0;z+x=0\)đều có A=1
Vậy ...

 

31 tháng 10 2016

Kinh quá hoa hết cả mắt. 

30 tháng 10 2016

B = 5x - x2

B = -x2 + 5x

-B = x2 - 5x

-4B = 4x2 - 20x

-4B = (2x-5)2 -25

B = -(2x-5)2 / 4 + 6,25

GTLN của B = 6,25 <=> 2x-5 = 0 => x = 5/2

30 tháng 10 2016

A = 2x2 + 10x - 1

2A = 4x2 + 20x - 2

2A = (2x+5)2 - 27

A = (2x+5)2 / 2 - 13,5

GTNN của A là -13,5 <=> 2x+5 = 0 => x = -5/2

30 tháng 10 2016

a) Hai tam giác OAM và OCP có: OA = OC 

                                                    ˆOAM=ˆOCP ( AB song song CD )

                                                    AM = CP

Suy ra 2 tam giác này bằng nhau => ˆMOA=ˆCOP => M, O, P thẳng hàng.

Tương tự suy ra N, O, Q thẳng hàng

b) Do BM = BN, BA = BC nên theo định lí Thales đảo suy ra MN song song AC + PQ song song AC => MN song song PQ. 

Tương tự MQ song song NP. Mà ta lại có AC vuông góc với BD => MNPQ là hình chữ nhật.