Trong một môn học, thầy giáo có 30 câu hỏi khác nhau gồm năm câu câu khó 10 câu trung bình và 15 câu dễ. Từ 30 câu hỏi đó có thể lập được bao nhiêu để kiểm tra, mỗi đề gồm 5 câu hỏi khác nhau trong mỗi đề phải có đủ cả 3 câu (khó,dễ,trung bình) và số câu dễ không ít hơn 2?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\left(x^2+1\%x\right)^4\)
\(=\left(x^2+\dfrac{1}{100}x\right)^4\)
\(=\left(x^2\right)^4+C^1_4\cdot\left(x^2\right)^3\cdot\left(\dfrac{1}{100}x\right)+C^2_4\cdot\left(x^2\right)^2\cdot\left(\dfrac{1}{100}x\right)^2+C^3_4\cdot\left(x^2\right)^1\cdot\left(\dfrac{1}{100}x\right)^3+C^4_4\cdot\left(\dfrac{1}{100}x\right)^4\)
\(=x^8+\dfrac{1}{25}x^6\cdot x+\dfrac{3}{5000}\cdot x^4\cdot x^2+\dfrac{1}{250000}\cdot x^2\cdot x^3+\dfrac{1}{10^4}\cdot x^4\)
\(=x^8+\dfrac{1}{25}x^7+\dfrac{3}{5000}x^6+\dfrac{1}{250000}x^5+\dfrac{1}{10000}x^4\)

có 952 số ạ
Gọi số cần tìm là abcd (với a khác b khác c khác d)
Để abcd chia hết cho 5 thì d thuộc 0 hoặc 5
TH1: d=0 => abc có 9.8.7=504 cách
Th2: d=5 => abc có 8.8.7 = 448 cách
Vậy có tất cả 504+448=952 cách
Chúc bạn Học Tốt!

- Gọi đường thẳng cần viết phương trình là d.
Vì đường thẳng (d) đi qua A(1; -2) và có vtcp là \(\overrightarrow{u}\) (4; -3)
Suy ra phương trình tham số của đường thẳng (d) là:
\(\begin{cases}x=1+4t\\ y=-2-3t\end{cases}\)
- Phương trình chính tắc của (d) là:
\(\frac{x-1}{4}\) = \(\frac{y+2}{-3}\)
- Phương trình tổng quát của (d) là:
-3x+3 - 4(y+2)= 0
<=> -3x-4y-5=0


C thuộc Ox nên C(x;0)
CQ=8
=>\(CQ^2=8^2=64\)
=>\(\left(3-x\right)^2+\left(8-0\right)^2=64\)
=>\(\left(3-x\right)^2=0\)
=>3-x=0
=>x=3
=>C(3;0)

Để viết phương trình tiếp tuyến (hay phương trình đường thẳng) của tam giác đi qua điểm \(\left(\right. 3 ; 2 \left.\right)\) và có vecto chỉ phương \(\left(\right. 4 ; - 5 \left.\right)\), ta có thể sử dụng phương trình đường thẳng dạng:
\(y - y_{1} = m \left(\right. x - x_{1} \left.\right)\)
Trong đó:
- \(\left(\right. x_{1} , y_{1} \left.\right)\) là tọa độ của một điểm trên đường thẳng, ở đây là \(\left(\right. 3 , 2 \left.\right)\).
- \(m\) là hệ số góc của đường thẳng. Hệ số góc được tính từ vecto chỉ phương \(\left(\right. 4 , - 5 \left.\right)\) là \(m = \frac{- 5}{4}\).
Vậy phương trình đường thẳng sẽ là:
\(y - 2 = \frac{- 5}{4} \left(\right. x - 3 \left.\right)\)
Chúng ta có thể giản ước phương trình trên:
\(y - 2 = \frac{- 5}{4} x + \frac{15}{4}\)
Chuyển vế và sắp xếp lại, ta có:
\(y = \frac{- 5}{4} x + \frac{15}{4} + 2\) \(y = \frac{- 5}{4} x + \frac{15}{4} + \frac{8}{4}\) \(y = \frac{- 5}{4} x + \frac{23}{4}\)
Vậy phương trình đường thẳng đi qua điểm \(\left(\right. 3 ; 2 \left.\right)\) và có vecto chỉ phương \(\left(\right. 4 ; - 5 \left.\right)\) là:
\(y = \frac{- 5}{4} x + \frac{23}{4}\)
like minh nhé

Olm chào em, với dạng này em chỉ cần làm lần lượt từng câu một, sau đó nhấn vào kiểm tra. Em cứ làm lần lượt như vậy cho đến khi hết câu của bài kiểm tra tức là em đã hoàn thành bài kiểm tra rồi em nhé. Cảm ơn em đã đồng hành cùng Olm. Chúc em học tập hiệu quả và vui vẻ cùng Olm.

a: Tọa độ trung điểm I của AB là:
\(\left\{{}\begin{matrix}x=\dfrac{-1+2}{2}=\dfrac{1}{2}\\y=\dfrac{1+3}{2}=\dfrac{4}{2}=2\end{matrix}\right.\)
=>I(1/2;2)
A(-1;1); B(2;3)
=>\(\overrightarrow{AB}=\left(2+1;3-1\right)\)
=>\(\overrightarrow{AB}=\left(3;2\right)\)
Gọi d là đường trung trực của AB
mà I là trung điểm của AB
nên d\(\perp\)AB tại I
d\(\perp\)AB nên d nhận \(\overrightarrow{AB}=\left(3;2\right)\) làm vecto pháp tuyến
Phương trình d là:
\(3\left(x-\dfrac{1}{2}\right)+2\left(y-2\right)=0\)
=>\(3x+2y-\dfrac{11}{2}=0\)
b: \(A\left(-1;1\right);C\left(1;4\right)\)
=>\(\overrightarrow{AC}=\left(1+1;4-1\right)=\left(2;3\right)\)
=>AC có vecto pháp tuyến là (-3;2)
Phương trình đường thẳng AC là:
-3(x+1)+2(y-1)=0
=>-3x-3+2y-2=0
=>-3x+2y-5=0
c: Tọa độ trung điểm M của AC là:
\(\left\{{}\begin{matrix}x=\dfrac{-1+1}{2}=\dfrac{0}{2}=0\\y=\dfrac{1+4}{2}=\dfrac{5}{2}\end{matrix}\right.\)
Xét ΔABC có
I,M lần lượt là trung điểm của AB,AC
=>IM là đường trung bình của ΔABC
=>IM//BC
I(1/2;2) M(0;5/2)
\(\overrightarrow{IM}=\left(0-\dfrac{1}{2};\dfrac{5}{2}-2\right)=\left(-\dfrac{1}{2};\dfrac{1}{2}\right)=\left(-1;1\right)\)
=>IM có vecto pháp tuyến là (1;1)
Phương trình đường trung bình ứng với cạnh BC là:
1(x-0)+1(y-5/2)=0
=>\(x+y-\dfrac{5}{2}=0\)
Ta có các trường hợp sau
Th1: Đề thi gồm 2 dễ, 3 trung bình, 1 khó: C 2/15 • C 2/10 • C 2/5
Th2: Đề thi gồm 2 dễ, 1 trung bình, 2 khó: C 2/15 • C 1/10 • C 2/5
Th3: Đề thi gồm 3 dễ, 1 trung bình, 1 khó:
C 3/15 • C 1/10 • C 1/5
Vậy có
C 2/15 • C 2/10 • C 2/5 + C 2/15 • C 1/10 • C 2/5 + C 3/15 • C 1/10 • C 1/5
TH1: Có 3 câu dễ, 1 câu trung bình, 1 câu khó: Có \(C_{15}^3\cdot10\cdot5=22750\) cách chọn
TH2: Có 2 câu dễ, 2 câu trung bình, 1 câu khó: Có \(C_{15}^2\cdot C_{10}^2\cdot5=23625\) cách chọn
TH3: Có 2 câu dễ, 1 câu trung bình, 2 câu khó: Có \(C_{15}^2\cdot10\cdot C_5^2=10500\) cách chọn
Vậy có tất cả \(22750+23625+10500=56875\) đề thỏa mãn ycbt.