K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2021

Để đths trên là hầm bậc nhất khi m - 1 \(\ne\)0 <=> \(m\ne1\)

đths y = (m-1)x + 2m cắt trục hoành taị điểm có hoành độ bằng 5 

Thay x = 5 ; y = 0 ta được : \(5\left(m-1\right)+2m=0\Leftrightarrow7m-5=0\Leftrightarrow m=\frac{5}{7}\)( tmđk )

9 tháng 8 2021

a, Với \(x\ge0;x\ne1\)

\(B=\frac{1}{\sqrt{x}-1}=2\Rightarrow2\sqrt{x}-2=1\Leftrightarrow2\sqrt{x}-3=0\Leftrightarrow x=\frac{9}{4}\)

b, Ta có : \(A.B=\frac{x+3}{\sqrt{x}+1}.\frac{1}{\sqrt{x}-1}=\frac{x+3}{x-1}=\frac{x-1+4}{x-1}=1+\frac{4}{x-1}\)

\(\Rightarrow x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

x - 11-12-24-4
x203-15-3

c, Ta có : \(A=\frac{x+3}{\sqrt{x}+1}\le3\Leftrightarrow\frac{x+3}{\sqrt{x}+1}-3\le0\)

\(\Leftrightarrow\frac{x-3\sqrt{x}}{\sqrt{x}+1}\le0\Rightarrow\sqrt{x}-3\le0\Leftrightarrow x\le9\)

Kết hợp với đk vậy 0 =< x =< 9 

9 tháng 8 2021

a, bạn tự vẽ nhé 

b, Để hàm số nghịch biến khi m < 0 

c, đths y = mx + 2m - 1 cắt trục tung tại điểm có tung độ bằng 3 

Thay x = 0 ; y = 3 ta được : \(2m-1=3\Leftrightarrow m=2\)

d, đths y = mx + 2m - 1 cắt trục hoành tại điểm có hoành độ bằng -3 

Thay x = -3 ; y = 0 ta được : \(-3m+2m-1=0\Leftrightarrow-m-1=0\Leftrightarrow m=-1\)

9 tháng 8 2021

bổ sung hộ mình nhé 

( dòng đầu tiên ) Để đths trên là hàm bậc nhất khi \(m\ne0\)

9 tháng 8 2021

\(\frac{ab}{\sqrt{ab+2021c}}+\frac{bc}{\sqrt{bc+2021a}}+\frac{ca}{\sqrt{ca+2021b}}\)

\(=\frac{ab}{\sqrt{ab+\left(a+b+c\right)c}}+\frac{bc}{\sqrt{bc+\left(a+b+c\right)a}}+\frac{ca}{\sqrt{ca+\left(a+b+c\right)b}}\)

\(=\frac{ab}{\sqrt{\left(c+a\right)\left(c+b\right)}}+\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{ca}{\sqrt{\left(b+a\right)\left(b+c\right)}}\)

\(\le\frac{1}{2}\left(\frac{ab}{c+a}+\frac{ab}{c+b}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{b+a}+\frac{ca}{b+c}\right)\)

\(=\frac{1}{2}\left[\left(\frac{ab}{c+a}+\frac{bc}{a+c}\right)+\left(\frac{ab}{c+b}+\frac{ca}{b+c}\right)+\left(\frac{bc}{a+b}+\frac{ca}{a+b}\right)\right]\)

\(=\frac{1}{2}\left(a+b+c\right)=\frac{2012}{2}=1006\)

​​​

9 tháng 8 2021

Cậu cộng hai pt với nhau thì được -5y = -5 => y=1

Sau đó thay vào một trong hai pt của hệ pt ban đầu (cái thứ hai sẽ nhanh hơn) được x=4 nhé

9 tháng 8 2021

đề là giải hệ phương trình hả bạn ? \(\hept{\begin{cases}-x-3y=-7\\x-2y=2\end{cases}}\)

Lấy (1) + (2) hệ pt tương đương \(\hept{\begin{cases}-5y=-5\\x-2y=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x-2y=2\end{cases}}\)

Thay vào ta được : \(x-2=2\Leftrightarrow x=4\)

Vậy hệ phương trình có một nghiệm của ( x ; y ) = ( 4 ; 1 )

9 tháng 8 2021

Đặt \(\hept{\begin{cases}\sqrt{x^2+x+4}=a\\\sqrt{x^2+x+1}=b\end{cases}}\)

\(\Rightarrow a+b=\sqrt{a^2+b^2+4}\)

\(\Leftrightarrow a^2+b^2+2ab=a^2+b^2+4\)

\(\Leftrightarrow ab=2\)

Lại có:

\(a^2-b^2=3\)

Kết hợp cả 2 được hệ

\(\hept{\begin{cases}ab=2\\a^2-b^2=3\end{cases}}\)

Làm nốt

\(a^2+b^2=2\)

\(\Leftrightarrow\left(a+b\right)^2-2ab=2\)

\(\Leftrightarrow2ab=\left(a+b\right)^2-2\)

Theo đề ra: \(P=3\left(a+b\right)+ab\)

\(\Leftrightarrow2P=6\left(a+b\right)+2ab\)

\(=6\left(a+b\right)+\left(a+b\right)^2-2\)

\(=\left(a+b\right)^2+2.3\left(a+b\right)+9-9-2\)

\(=[\left(a+b\right)+3]^2-11\)

\(\Leftrightarrow P=\frac{1}{1}\left(a+b+3\right)^2-\frac{11}{2}\)

Ta có: \(\left(a+b+3\right)^2\ge0\forall a,b\inℝ\)

\(\Leftrightarrow\frac{1}{2}\left(a+b+3\right)^2-\frac{11}{2}\ge\frac{-11}{2}\forall a,b\inℝ\)

\(\Leftrightarrow MinP=\frac{-11}{2}\)