Một hình trụ có S xung quanh =72 x pi cm2 và chiều cao 12cm.Tính V hình trụ lấy pi=3,14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để (d) cắt (d') thì \(m+1\ne2\)
=>\(m\ne1\)
Phương trình hoành độ giao điểm là:
\(\left(m+1\right)x+2x+3\)
=>\(\left(m+1\right)x-2x=0\)
=>x(m-1)=0
=>x=0
=>\(y=2\cdot0+3=3\)
b: Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\\left(m+1\right)x+3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{3}{m+1}\\y=0\end{matrix}\right.\)
vậy: A(0;3); O(0;0); \(B\left(-\dfrac{3}{m+1};0\right)\)
\(OA=\sqrt{\left(0-0\right)^2+\left(3-0\right)^2}=3\)
\(OB=\sqrt{\left(-\dfrac{3}{m+1}-0\right)^2+\left(0-0\right)^2}=\dfrac{3}{\left|m+1\right|}\)
OA=2OB
=>\(3=\dfrac{6}{\left|m+1\right|}\)
=>|m+1|=2
=>\(\left[{}\begin{matrix}m+1=2\\m+1=-2\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)
GỌi số sách khối 8 quyên được trong kì I là x (quyển) với x>0
Số sách khối 9 quyên được trong học kì I là y (quyển) với y>0
Do trong kì I cả 2 lớp quyên được 620 quyển nên ta có pt:
\(x+y=620\) (1)
Trong kì II khối 8 quyên nhiều hơn 15% nên quyên được:
\(x.\left(100\%+15\%\right)=1,15x\) quyển
Trong kì II khối 9 quyên được nhiều hơn 12% nên quyên được:
\(y.\left(100\%+12\%\right)=1,12y\) quyển
Do kì II cả 2 lớp quyên được 704 quyển sách nên ta có pt:
\(1,15x+1,12y=704\) (2)
Từ (1) và (2) ta có hệ:
\(\left\{{}\begin{matrix}x+y=620\\1,15x+1,12y=704\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=320\\y=300\end{matrix}\right.\)
Vậy trong năm học khối 8 quyên được: \(320+320.1,15=688\) quyển sách
Khối 9 quyên được: \(300+300.1,12=636\) quyển sách
Để hệ có nghiệm duy nhất thì \(\dfrac{2}{a+2}\ne\dfrac{a-2}{-2}\)
=>\(\left(a+2\right)\left(a-2\right)\ne-4\)
=>\(a^2\ne0\)
=>\(a\ne0\)
\(\left\{{}\begin{matrix}2x+\left(a-2\right)y=a+1\\\left(a+2\right)x-2y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(2a+4\right)x+\left(a^2-4\right)y=\left(a+1\right)\left(a+2\right)\\\left(2a+4\right)x-4y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a^2y=a^2+3a+2-6=a^2+3a-4\\2x+\left(a-2\right)y=a+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{a^2+3a-4}{a^2}\\2x=a+1-\dfrac{\left(a-2\right)\left(a^2+3a-4\right)}{a^2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{a^2+3a-4}{a^2}\\2x=\dfrac{a^3+a^2-a^3-3a^2+4a+2a^2+6a-8}{a^2}=\dfrac{10a-8}{a^2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{5a-4}{a^2}\\y=\dfrac{a^2+3a-4}{a^2}\end{matrix}\right.\)
\(x+y=\dfrac{a^2+3a-4+5a-4}{a^2}=\dfrac{a^2+8a-8}{a^2}\)
\(=1+\dfrac{8}{a}-\dfrac{8}{a^2}\)
\(=-8\left(\dfrac{1}{a^2}-\dfrac{1}{a}-\dfrac{1}{8}\right)\)
\(=-8\left(\dfrac{1}{a^2}-2\cdot\dfrac{1}{a}\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{3}{8}\right)\)
\(=-8\left(\dfrac{1}{a}-\dfrac{1}{2}\right)^2+3< =3\forall a\ne0\)
Dấu '=' xảy ra khi a=2
a: Xét tứ giác OHCA có \(\widehat{AHC}=\widehat{AOC}=90^0\)
nên OHCA là tứ giác nội tiếp
b: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
Xét ΔAON vuông tại O và ΔAMB vuông tại M có
\(\widehat{OAN}\) chung
Do đó: ΔAON~ΔAMB
=>\(\dfrac{AO}{AM}=\dfrac{AN}{AB}\)
=>\(AM\cdot AN=AO\cdot AB=2R^2\) không đổi
Mình cx ko rõ nx nên... Bạn tham khảo ý kiến các thầy cô nha!
\(#Nick2cuaLưuNguyenHaAnn\)
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{\sqrt{5}-\sqrt{2}}\)
\(=\left(\dfrac{-\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\sqrt{5}\right)\cdot\left(\sqrt{5}-\sqrt{2}\right)\)
\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)\)
\(=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(5-2\right)=-3\)
a: Xét tứ giác BCEF có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BCEF là tứ giác nội tiếp
ĐKXĐ: \(x\ge2\)
\(\sqrt{4x-8}-\sqrt{x-2}=2\)
\(\Leftrightarrow\sqrt{4\left(x-2\right)}-\sqrt{x-2}=2\)
\(\Leftrightarrow2\sqrt{x-2}-\sqrt{x-2}=2\)
\(\Leftrightarrow\sqrt{x-2}=2\)
\(\Leftrightarrow x-2=4\)
\(\Leftrightarrow x=6\) (thỏa mãn)
a: Xét tứ giác ADHE có \(\widehat{ADH}+\widehat{AEH}=90^0+90^0=180^0\)
nên ADHE là tứ giác nội tiếp
Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BEDC là tứ giác nội tiếp
b: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{DAB}\) chung
Do đó: ΔADB~ΔAEC
=>\(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
=>\(AD\cdot AC=AB\cdot AE\)
Gọi bán kính đáy là R
Ta có: \(S_{xq}=2\pi Rh\Rightarrow R=\dfrac{S_{xq}}{2\pi h}=\dfrac{72\pi}{2\pi.12}=3\left(cm\right)\)
Thể tích trụ:
\(V=\pi R^2.h=3,14.3^2.12=339,12\left(cm^3\right)\)