Phiền mọi người giúp hộ 3 câu này ạ, cảm ơn rất nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\hept{\begin{cases}x-2=a+1\\3x+y=7a+3\end{cases}}\) mà a = 2y + 1
\(\Leftrightarrow\hept{\begin{cases}x-2=2y+1+1\\3x+y=7\left(2y+1\right)+3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2=2y+2\\3x+y=14y+10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x-6=6y+6\\3x+y=14y+10\end{cases}}\)
\(\Rightarrow y+6=8y+4\)
\(\Leftrightarrow7y=2\Leftrightarrow y=\frac{2}{7}\)
2. \(\hept{\begin{cases}x-2y=a+1\\3x+y=7a+3\end{cases}}\) trong đó a = 1; a' = 3; b = -2; b' = 1
\(\Rightarrow\hept{\begin{cases}\frac{a}{a'}=\frac{1}{3}\\\frac{b}{b'}=-2\end{cases}}\Rightarrow\frac{a}{a'}\ne\frac{b}{b'}\) nên hệ pt có nghiệm duy nhất với mọi a
a, chưa nghĩ ra
Tất cả mấy phương trình này cứ thấy căn là đặt căn = a; b là làm được hết
( mấy cái cơ bản thì tự viết nhé )
a) góc MAO và góc MBO= 90 độ
xét tứ giác MAOB có góc MAO+MBO=180 độ
=> MAOB nội tiếp
b) Xét (O) có EB là tiếp tuyến của (O)
\(\Rightarrow\widehat{EBD}=\widehat{EAB}\left(=\frac{1}{2}sđ\widebat{DB}\right)\)
Xét tam giác EDB và tam giác EBA có:
\(\hept{\begin{cases}\widehat{AEB}chung\\\widehat{EBD}=\widehat{EAB}\left(cmt\right)\end{cases}\Rightarrow\Delta EDB~\Delta EBA\left(g-g\right)}\)
\(\Rightarrow\frac{BE}{DE}=\frac{AE}{BE}\)
\(\Rightarrow BE^2=AE.DE\left(1\right)\)
Vì \(AC//MB\Rightarrow\widehat{ACM}=\widehat{DME}\left(SLT\right)\)
Ta có: \(\hept{\begin{cases}\widehat{ACM}=\widehat{ABD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\\\widehat{ABD}=\widehat{MAD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\end{cases}\Rightarrow\widehat{ACM}=\widehat{MAD}}\)
\(\Rightarrow\widehat{DME}=\widehat{MAD}\)
Xét tam giác EMD và tam giác EAM có:
\(\hept{\begin{cases}\widehat{DME}=\widehat{MAD}\\\widehat{AME}chung\end{cases}}\Rightarrow\Delta EMD~\Delta EAM\left(g-g\right)\)
\(\Rightarrow\frac{ME}{DE}=\frac{AE}{ME}\)
\(\Rightarrow ME^2=DE.AE\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BE=ME\left(đpcm\right)\)
c) mai nốt :V
c) El à trung điểm MB;H là trung điểm AB
-> EH là đường trung bình tam giác MAB
=> EH// MA
=> góc EHB= góc MAB ( đồng vị )
Mà góc MAB = góc AKB ( = 1/2 số đo cung AB )
=> góc EHB= góc AKB
mà góc EHB+ góc IHB = 180 độ
=> góc AKB + góc IHB = 180 độ
=> BHIK nội tiếp
=> góc BHK= BIK mà góc BHK= 90 độ
=> góc BIK= 90 độ
=> AK vuông góc với BI
\(\sqrt{\frac{2x-3}{2x^2+1}}\)có nghĩa <=> \(\frac{2x-3}{2x^2+1}\ge0\Leftrightarrow2x-3\ge0\Leftrightarrow x\ge\frac{3}{2}\)( vì 2x2 + 1 > 0 )
\(\sqrt{\frac{2x-3}{2x^2+1}}\) > hoặc =0
=> 2x-3 > hoặc =0 ( vì 2x^2 + >0 )
=> 2x > hoặc =3
=>x > hoặc = 3/2
\(P=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(P=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(P=\left|2x-1\right|+\left|2x-3\right|\)
\(P=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\)
dấu "=" xảy ra khi và chỉ khi
\(\hept{\begin{cases}2x-1\ge0\\3-2x\ge0\end{cases}}\hept{\begin{cases}x\ge\frac{1}{2}\\x\le\frac{3}{2}\end{cases}< =>\frac{1}{2}\le}x\le\frac{3}{2}\)
vậy \(MIN:P=2\)
Phương trình có hai nghiệm phân biệt <=> Δ ≥ 0 <=> (-2)2 - 4.1/2.(m-1) ≥ 0 <=> 4 - 2m + 2 ≥ 0 <=> m ≤ 3
Theo hệ thức Viète : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=2m-2\end{cases}}\)
Ta có : \(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\Leftrightarrow x_1x_2\left(x_1^2+x_2^2\right)+96=0\)
\(\Leftrightarrow x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+96=0\Leftrightarrow\left(2m-2\right)\left(18-2m\right)+96=0\)
\(\Leftrightarrow m^2-10-15=0\)
\(\Delta=b^2-4ac=100+60=160\)
\(\Delta>0\), áp dụng công thức nghiệm thu được \(m_1=5+2\sqrt{10}\left(ktm\right);m_2=5-2\sqrt{10}\left(tm\right)\)
Vậy với \(m=5-2\sqrt{10}\)thì thỏa mãn đề bài
\(a=\frac{1}{2};b=-2;c=m-1\)
\(\Delta=\left(-2\right)^2-4.\frac{1}{2}.\left(m-1\right)\)
\(\Delta=4-2\left(m-1\right)\)
\(\Delta=4-2m+2\)
\(\Delta=6-2m\)
để pt có 2 nghiệm phân biệt thì \(6-2m>0\)
\(< =>m< 3\)
áp dụng vi - ét
\(\hept{\begin{cases}x_1+x_2=\frac{2}{\frac{1}{2}}=4\\x_1x_2=\frac{m-1}{\frac{1}{2}}=2m-2\end{cases}}\)
\(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\)
\(\left(2m-2\right)\left(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{2}\right)+48=0\)
\(\left(2m-2\right)\left(\frac{4^2-4m-4}{2}\right)+48=0\)
\(\left(2m-2\right)\left(6-2m\right)+48=0\)
\(12m-12-4m^2+4m+48=0\)
\(-4m^2+16m+36=0\)
\(\sqrt{\Delta}=\sqrt{16^2-4.\left(-4\right).36}=8\sqrt{13}\)
\(m_1=\frac{8\sqrt{13}-16}{-8}=2-\sqrt{13}\left(TM\right)\)
\(m_2=\frac{-8\sqrt{13}-16}{-8}=2+\sqrt{13}\left(KTM\right)\)
vậy \(m=2-\sqrt{13}\)thì thỏa mãn yêu cầu \(x_1x_2\left(\frac{x_1^2}{2}+\frac{x_2^2}{2}\right)+48=0\)
ĐK : x >= 0
\(D=x+\sqrt{x}+1=x+\sqrt{x}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\ge1\)
Dấu ''='' xảy ra khi x = 0
Vậy GTNN của D bằng 1 tại x = 0
\(D=x+\sqrt{x}+1\left(ĐKXĐ:x\ge0\right)\)
Ta có: \(D=x+\sqrt{x}+1\ge1\forall x\ge0\)
Dấu '' = '' xảy ra khi \(x=0\)
Vậy \(minD=1\Leftrightarrow x=0\)
Ta có : x3 + y3 + 3(x2y + xy2) = 35 + 3.30
<=> (x + y)3 = 125
<=> x + y = 5 (1)
mà x2y + xy2 = 30
<=> xy(x + y) = 30
<=> xy = 6
Từ (1) => (x + y)2 = 25
<=> x2 + y2 + 2xy = 25
<=> x2 + y2 - 2xy = 1
<=> (x - y)2 = 1
<=> x - y = \(\pm1\)
Khi x - y = 1 ; x + y = 5 => x = 3 ; y = 2
Khi x - y = -1 ; x + y = 5 => x = 2 ; y = 3
8) \(\hept{\begin{cases}x^2y+xy^2=30\\x^3+y^3=35\end{cases}}\Leftrightarrow\hept{\begin{cases}xy\left(x+y\right)=30\\\left(x+y\right)^3-3xy\left(x+y\right)=35\end{cases}}\)
Đặt xy = a ; x + y = b , hpt đã cho trở thành \(\hept{\begin{cases}ab=30\\b^3-3ab=35\end{cases}}\Leftrightarrow\hept{\begin{cases}ab=30\\b^3-90=35\end{cases}}\Leftrightarrow\hept{\begin{cases}ab=30\\b^3=125\end{cases}}\Leftrightarrow\hept{\begin{cases}ab=30\\b=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=6\\b=5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y=5\\xy=6\end{cases}}\). Đến đây bạn giải pt x2 - Sx+ P = 0 với S = x + y và P = xy nhé , trong SGK có hd đấy:)
=> x = 2 ; y = 3 hoặc x = 3 ; y = 2