Giải phương trình:
\(4x^2-11x+6=\left(x-1\right).\sqrt{2x^2-6x+6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x=a^2;y=b^2;z=c^2\)
bđt \(\Leftrightarrow\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)
Áp dụng bđt Bunhiacopxki ta có:
\(\left(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\right)^2\)\(=\left(\sqrt{\frac{x\left(x+z\right)}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{y\left(y+x\right)}{\left(y+z\right)\left(y+x\right)}}+\sqrt{\frac{z\left(z+y\right)}{\left(z+x\right)\left(z+y\right)}}\right)^2\)
\(\le2\left(x+y+z\right)\left(\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(y+z\right)\left(y+x\right)}+\frac{z}{\left(z+x\right)\left(z+y\right)}\right)\)
\(=\frac{4\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (*)
Ta cần CM: (*) \(\le\frac{9}{2}\)
Hay \(8\left(x+y+z\right)\left(xy+yz+zx\right)\le9\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
hay \(8xyz\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (luôn đúng)
=> đpcm
Đẳng thức xảy ra <=> a=b=c
AD bđt AM-GM ta có
\(\frac{b+c}{a^2}+\frac{4}{b+c}\ge2\sqrt{\frac{b+c}{a^2}\frac{4}{b+c}}=\frac{4}{a}\) (1)
Tương tự có: \(\frac{c+a}{b^2}+\frac{4}{c+a}\ge\frac{4}{b}\) (2)
\(\frac{a+b}{c^2}+\frac{4}{a+b}\ge\frac{4}{c}\) (3)
Cộng theo vế các bđt (1), (2), (3) ta được:
\(\frac{b+c}{a^2}+\frac{c+a}{b^2}+\frac{a+b}{c^2}+\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\) (4)
Lại có: \(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{a}\frac{1}{b}}=\frac{4}{2\sqrt{ab}}\ge\frac{4}{a+b}\) (5)
Tương tự: \(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c}\) (6)
\(\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\) (7)
Cộng theo vế các bđt (4),(5),(6),(7) ta được:
\(\frac{b+c}{a^2}+\frac{c+a}{b^2}+\frac{a+b}{c^2}+\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}+\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}+\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\)
=> đpcm
đk: \(x\ge-3\)
\(pt\Leftrightarrow x^2+2x\sqrt{x+3}+x+3+x+\sqrt{x+3}-12=0\)
\(\Leftrightarrow\left(x+\sqrt{x+3}\right)^2+\left(x+\sqrt{x+3}\right)-12=0\)
\(\Leftrightarrow\left(x+\sqrt{x+3}+4\right)\left(x+\sqrt{x+3}-3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=-4-x\left(1\right)\\\sqrt{x+3}=3-x\left(2\right)\end{cases}}\)
giải (1): Ta có: \(x\ge-3\Leftrightarrow VP=-4-x\le-1,VT\ge0\)
=> (1) vô nghiệm
giải (2): \(\left(2\right)\Leftrightarrow\hept{\begin{cases}x\le3\\x+3=x^2-6x+9\end{cases}\Leftrightarrow x^2-7x+6=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=6\end{cases}}}\)
Theo điều kiện => pt có nghiệm: x=1
pt \(\Leftrightarrow\left(2x-3\right)^2+x-3=\left(x-1\right)\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}\)
Đặt \(a=2x-3;b=\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}\)
Ta có hpt \(\hept{\begin{cases}a^2+x-3=\left(x-1\right)b\\b^2+x-3=\left(x-1\right)a\end{cases}}\)
Trừ 2 pt trên ta được: \(a^2-b^2=\left(x-1\right)\left(b-a\right)\Rightarrow\left(a-b\right)\left(a+b+x-1\right)=0\)
+) Nếu \(a=b\Leftrightarrow2x-3=\sqrt{2x^2-6x+6}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\2x^2-6x+3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3-\sqrt{3}}{2}\left(loại\right)\\x=\frac{3+\sqrt{3}}{2}\left(tm\right)\end{cases}}}\)
+) Nếu \(2x-3+\sqrt{2x^2-6x+6}+x-3=0\Leftrightarrow\sqrt{2x^2-6x}=6-3x\)\(\Leftrightarrow\hept{\begin{cases}x\le2\\7x^2-30x+36=0\end{cases}\left(VN\right)}\)
Vậy pt có nghiệm duy nhất: \(x=\frac{3+\sqrt{3}}{2}\)
\(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+x-3=\left(x-1\right)\sqrt{2x^2-5x+3-x+3}\)
\(\Leftrightarrow\left(2x-3\right)^2+x+3=\left(x-1\right)\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}\)
đặt \(\hept{\begin{cases}t=2x-3\\y=\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}\left(y\ge0\right)\end{cases}}\)
ta có hệ : \(\hept{\begin{cases}t^2+x-3=\left(x-1\right)y\\y^2-\left(x-1\right)t+x-3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}t^2-\left(x-1\right)y+\left(x-3\right)=0\\y^2-\left(x-1\right)t+\left(x-3\right)=0\end{cases}}\)
\(\Rightarrow t^2-y^2-\left(x-1\right)y+\left(x-1\right)t=0\)
\(\Leftrightarrow\left(t-y\right)\left(t+y\right)+\left(x-1\right)\left(t-y\right)=0\)
\(\Leftrightarrow\left(t-y\right)\left(t+y+x-1\right)=0\)
th1 : \(t-y=0\Leftrightarrow t=y\Leftrightarrow2x-3=\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}\) ĐK : \(x\ge\frac{3}{2}\)
\(\Leftrightarrow4x^2-12x+9=2x^2-6x+6\)
\(\Leftrightarrow2x^2-6x+3=0\)
\(\Delta=b^2-4ac=\left(-6\right)^2-4\cdot2\cdot3=12\)
\(\Rightarrow\orbr{\begin{cases}x=3+\sqrt{3}\left(tm\right)\\x=3-\sqrt{3}\left(loai\right)\end{cases}}\)
th2 : \(x+y+t-1=0\Leftrightarrow y=1-x-t\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(2x-3\right)-\left(x-3\right)}=1-x-2x+3\)
\(\Leftrightarrow\sqrt{2x^2-6x+6}=4-3x\left(đk:x\le\frac{4}{3}\right)\)
\(\Leftrightarrow2x^2-6x+6=16-24x+9x^2\)
\(\Leftrightarrow7x^2-18x+10=0\)
\(\Delta=b^2-4ac=\left(-18\right)^2-4\cdot7\cdot10=44\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{18+\sqrt{44}}{2}=9+\sqrt{11}\left(loai\right)\\x=\frac{18-\sqrt{44}}{2}=9-\sqrt{11}\left(loai\right)\end{cases}}\)