Cho hình vuông $A B C D$ có tâm là $O$ và cạnh $a . M$ là một điểm bất kỳ. a) Tính $|\overrightarrow{A B}+\overrightarrow{A D}|,|\overrightarrow{O A}-\overrightarrow{C B}|,|\overrightarrow{C D}-\overrightarrow{D A}|$ b) Chứng minh rằng $\vec{u}=\overrightarrow{M A}+\overrightarrow{M B}-\overrightarrow{M C}-\overrightarrow{M D}$ không phụ thuộc vị trí điểm $M$. Tính độ dài vectơ $u$
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
G là trọng tâm ΔABC
\(\overrightarrow{\rm GA}+\overrightarrow{\rm GB}+\overrightarrow{\rm GC}=\overrightarrow{\rm 0}\)
G là trọng tâm ΔAEF
\(\overrightarrow{\rm GA}+\overrightarrow{\rm GE}+\overrightarrow{\rm GC}=\overrightarrow{\rm 0}\)
\(\overrightarrow{\rm GA}+\overrightarrow{\rm GE}+\overrightarrow{\rm GC}=\overrightarrow{\rm GA}+\overrightarrow{\rm GE}+\overrightarrow{\rm GF}\)
\(\overrightarrow{\rm GB}+\overrightarrow{\rm GC}=\overrightarrow{\rm GE}+\overrightarrow{\rm GF}\)
\(\overrightarrow{\rm GE}+\overrightarrow{\rm EB}+\overrightarrow{\rm GC}=\overrightarrow{\rm GE}+\overrightarrow{\rm GC}+\overrightarrow{\rm GF}\)
\(\overrightarrow{\rm EB}=\overrightarrow{\rm CF}\)
\(\overrightarrow{\rm EB}=\overrightarrow{\rm FC}\)
G là trọng tâm ΔABC
\(\overrightarrow{\rm GA}+\overrightarrow{\rm GB}+\overrightarrow{\rm GC}=\overrightarrow{\rm 0}\)
G là trọng tâm ΔAEF
\(\overrightarrow{\rm GA}+\overrightarrow{\rm GE}+\overrightarrow{\rm GC}=\overrightarrow{\rm 0}\)
\(\overrightarrow{\rm GA}+\overrightarrow{\rm GE}+\overrightarrow{\rm GC}=\overrightarrow{\rm GA}+\overrightarrow{\rm GE}+\overrightarrow{\rm GF}\)
\(\overrightarrow{\rm GB}+\overrightarrow{\rm GC}=\overrightarrow{\rm GE}+\overrightarrow{\rm GF}\)
\(\overrightarrow{\rm GE}+\overrightarrow{\rm EB}+\overrightarrow{\rm GC}=\overrightarrow{\rm GE}+\overrightarrow{\rm GC}+\overrightarrow{\rm GF}\)
\(\overrightarrow{\rm EB}=\overrightarrow{\rm CF}\)
\(\overrightarrow{\rm EB}=\overrightarrow{\rm FC}\)