tính giá trị đa thức sau biết:x+y=2
x^3+x^2*y+2*x^2-x*y-y^2+3*y+x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi đa thức trên là $A$
$A=a^2b^2(a-b)-b^2c^2[(a-b)+(c-a)]+a^2c^2(c-a)$
$=a^2b^2(a-b)-b^2c^2(a-b)+a^2c^2(c-a)-b^2c^2(c-a)$
$=(a-b)(a^2b^2-b^2c^2)+(c-a)(a^2c^2-b^2c^2)$
$=(a-b)b^2(a^2-c^2)+(c-a)c^2(a^2-b^2)$
$=(a-b)b^2(a-c)(a+c)+(c-a)c^2(a-b)(a+b)$
$=(a-b)(a-c)[b^2(a+c)-c^2(a+b)]$
$=(a-b)(a-c)(b^2a+b^2c-ac^2-bc^2)$
$=(a-b)(a-c)[a(b^2-c^2)+bc(b-c)]$
$=(a-b)(a-c)(b-c)(ab+bc+ac)$
Lần sau bạn lưu ý, gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người đọc hiểu đề của bạn hơn nhé.
a) \(DKXD:\left\{{}\begin{matrix}x^2-4=\left(x-2\right)\left(x+2\right)\ne0\\x+2\ne0\\x-2\ne0\\1-\dfrac{x}{x+2}\ne0\end{matrix}\right.\Leftrightarrow x\ne\left\{2;-2\right\}\)
\(A=\left(\dfrac{x}{x^2-4}+\dfrac{1}{x+2}-\dfrac{2}{x-2}\right):\left(1-\dfrac{x}{x+2}\right)\\ =\left[\dfrac{x}{\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x+2}-\dfrac{2}{x-2}\right]:\dfrac{x+2-x}{x+2}\\ =\dfrac{x+x-2-2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.\dfrac{x+2}{2}\\ =\dfrac{x+x-2-2x-4}{2\left(x-2\right)}\\ =\dfrac{-6}{2\left(x-2\right)}=\dfrac{-3}{x-2}\)
b) Thay x=-4 (TMDK) vào biểu thức A, ta được:
\(A=\dfrac{-3}{-4-2}=\dfrac{-3}{-6}=\dfrac{1}{2}\)
c) Để A đạt gt nguyên thì: 3 chia hết cho (x-2)
=> x-2 thuộc Ư(3)={1;-1;3;-3}
=> x thuộc {3;1;5;-1} (TMDK)
Vậy x thuộc {3;1;5;-1} là các gt nguyên thỏa mãn A nguyên
Lời giải:
a.
Đơn thức:
$\frac{4}{5}x$: hệ số $\frac{4}{5}$, phần biến $x$
$(\sqrt{2}-1)xy$: hệ số $\sqrt{2}-1$, phần biến $xy$
$-3xy^2$: hệ số $-3$, phần biến $xy^2$
$\frac{1}{2}x^2y$: hệ số $\frac{1}{2}$, phần biến $x^2y$
$\frac{1}{x}y^3$: hệ số $1$, phần biến $\frac{1}{x}y^3$
$\frac{-3}{2}x^2y$: hệ số $\frac{-3}{2}$, phần biến $x^2y$
Các biểu thức còn lại không phải đơn thức.
c.
Gọi đa thức là $A(x)$
$A(x)=\frac{4}{5}x+(\sqrt{2}-1)xy-3xy^2+\frac{1}{2}x^2y+\frac{1}{x}y^3+\frac{-3}{2}x^2y$
$=\frac{4}{5}x+(\sqrt{2}-1)xy-3xy^2-x^2y+\frac{1}{x}y^3$
Bậc: $3$
ĐKXĐ: \(x\ne-3;x\ne3\)
\(\left(\dfrac{2x}{x-3}+\dfrac{x}{x+3}+\dfrac{2x^2+3x+1}{9-x^2}\right):\dfrac{x-1}{x+3}\)
\(=\left(\dfrac{2x}{x-3}+\dfrac{x}{x+3}-\dfrac{2x^2+3x+1}{x^2-9}\right):\dfrac{x-1}{x+3}\)
\(=\dfrac{2x\left(x+3\right)+x\left(x-3\right)-2x^2-3x-1}{\left(x-3\right)\left(x+3\right)}:\dfrac{x-1}{x+3}\)
\(=\dfrac{2x^2+6x+x^2-3x-2x^2-3x-1}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x-1}\)
\(=\dfrac{x^2-1}{\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x-1}\)
\(=\dfrac{x+1}{x-3}\)
\(x^3-8+\left(x-2\right)\left(x+1\right)=0\)
=>\(\left(x-2\right)\left(x^2+2x+4\right)+\left(x-2\right)\left(x+1\right)=0\)
=>\(\left(x-2\right)\left(x^2+2x+4+x+1\right)=0\)
=>\(\left(x-2\right)\left(x^2+3x+5\right)=0\)
mà \(x^2+3x+5=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}>0\forall x\)
nên x-2=0
=>x=2
\(4x^4+81\)
\(=4x^4+36x^2+81-36x^2\)
\(=\left(2x^2+9\right)^2-\left(6x\right)^2\)
\(=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)
=>a=2; b=6
a+b=2+6=8
\(-5x^3+xy^2z^3\) có bậc là \(MAX\left(3;1+2+3\right)=1+2+3=6\)
a) Ta có: \(a^{2k}=5\)
\(P=2a^{6k}-4=2\cdot a^{3\cdot2k}-4=2\cdot\left(a^{2k}\right)^3-4\)
\(=2\cdot5^3-4=2\cdot125-4=250-4=246\)
b) Ta có: \(a^{3k}=-5\)
\(Q=2a^{6k}-4=2\cdot a^{3k\cdot2}-4=2\cdot\left(a^{3k}\right)^2-4\\ =2\cdot\left(-5\right)^2-4=2\cdot25-4=50-4=46\)
Sửa đề:
\(x^3+x^2y-2x^2-xy-y^2+3y+x-1\\=x^2(x+y)-2x^2-y(x+y)+2y+(x+y)-1\\=2x^2-2x^2-2y+2y+2-1\\=1\)