Help me plsss
Cho A=5+4+4^2+...+4^2008.
B=4^2006
CMR: A<B/2
TYSM!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tập là A, Ta có:
A = { -4 ; -3 ; -2 ; -1 ; 0; 1; 2 ; 3; 4; 5}
Tổng của A là:
(-4) + (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 4 + 5
=[(-4) + (-3) + (-2) + (-1)] + 0 + [1 + 2 + 3 + 4 + 5]
= (-10) + 15
=(15 - 10)
= 5
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
Lời giải:
$T=3-3^2+3^3-3^4+....-3^{2000}$
$3T=3^2-3^3+3^4-3^5+...-3^{2001}$
$\Rightarrow T+3T=3-3^{2001}$
$\Rightarrow 4T=3-3^{2001}$
$\Rightarrow T=\frac{3-3^{2001}}{4}$
Lời giải:
$A-4=1+4+4^2+4^3+...+4^{2008}$
$4(A-4)=4+4^2+4^3+...+4^{2009}$
$\Rightarrow 4(A-4)-(A-4)=4^{2009}-1$
$\Rightarrow 3(A-4)=4^{2009}-1$
$\Rightarrow 3A=4^{2009}+11> 4^{2009}=4.4^{2008}$
$\Rightarrow A> \frac{4.4^{2008}}{3}> 4^{2008}$
$\Rightarrow 2A> 2.4^{2008}> 4^{2006}$ hay $2A> B$
Hay $A> \frac{B}{2}$
Đề sai bạn xem lại.