K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2021

a)=1-4a
b) = 2x - 4y
c) = 2x - 2 (nếu x>5)
=2x(nếu x<5)
 

3 tháng 10 2021

-1.       2x.        2x

1 tháng 10 2021

-\(x+3+\sqrt{x^2-6x+9}\)

\(=x+3+\left|x\right|-6x+9\)

\(x< 0\)

\(--->x+3-x-6x+9\)

\(=\left(x-x\right)-6x+3+9\)

\(=-6x+\left(3+9\right)=-6x+12\)

\(x>0\)

\(--->3+x+x-6x+9\)

\(=\left(x+x-6x\right)+\left(3+9\right)\)

\(=\left(2x-6x\right)+12\)

\(=4x+12\)

2 tháng 10 2021

a) A=6
b) B=1
 

1 tháng 10 2021

\(\sqrt{13+30\sqrt{2}+\sqrt{9+4\sqrt{2}}}\)

\(=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}\right)^2}+4\sqrt{2}+1^2}}\)

\(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1^2}}\)

\(=\sqrt{13+30\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}+1^2}}\)

\(=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)

\(=\sqrt{5^2+2.5.3\sqrt{2}+\left(3+\sqrt{2}\right)^2}\)

\(=\sqrt{\left(5+3+\sqrt{2}\right)^2}\)

\(=\sqrt{\left(5+6\right)}=\sqrt{11}\)

\(=5+6=11\)

2 tháng 10 2021

a)=1
b)=\(3\sqrt{2}+5\)

1 tháng 10 2021

\(\left(\sqrt{3}-\sqrt{2}\right)\sqrt{5+2\sqrt{6}}\)

\(=\sqrt{15+2.3.\sqrt{6}}\)\(-\sqrt{10+2.2\sqrt{6}}\)

\(=\sqrt{9+2.3\sqrt{6}+6}\)\(-\sqrt{6+2.\sqrt{6}.2+4}\)

\(=\sqrt{\left(3+\sqrt{6}\right)^2}\)\(-\sqrt{\left(\sqrt{6}+2\right)^2}\)

\(=3+\sqrt{6}\)\(-2\)\(-\sqrt{6}=\left(3-2\right)+\left(\sqrt{6}-\sqrt{6}\right)\)

\(=1+0=1\)

2 tháng 10 2021

a)  \((\sqrt{3}-\sqrt{2}).\sqrt{(\sqrt{3}+\sqrt{2})^2}\)

\(\left(\sqrt{3}-\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right)\)

\(\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2\)\(=3-2=1\)

b)  \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)

=\(\sqrt{(2+2\sqrt{5})^2}+\sqrt{(\sqrt{5}-2)^2}\)

=\(2+2\sqrt{5}+\sqrt{5}-2\)\(=3\sqrt{5}\)

1 tháng 10 2021

\(\sqrt{6-4\sqrt{2}}\)\(+\sqrt{22-12\sqrt{2}}\)

\(=\sqrt{4-4\sqrt{2}+2}\)\(+\sqrt{18-12\sqrt{2}+4}\)

\(=\sqrt{\left(2-\sqrt{2}\right)^2}\)\(+\sqrt{\left(2-3\sqrt{2}\right)^2}\)

\(=2-\sqrt{2}+3\sqrt{2}-2\)

\(=\left(2-2\right)+\left(-\sqrt{2}+3\sqrt{2}\right)\)

\(=0+2\sqrt{2}\)\(=2\sqrt{2}\)

1 tháng 10 2021

\(\sqrt{17-12\sqrt{2}}\)\(+\sqrt{9+4\sqrt{2}}\)

\(=\sqrt{\left(3-2\sqrt{2}\right)^2}\)\(+\sqrt{\left(2\sqrt{2}+1\right)^2}\)

\(=\left|3-2\sqrt{2}\right|\)\(+\left|2\sqrt{2}+1\right|\)

\(=3-2\sqrt{2}\)\(+2\sqrt{2}+1\)

\(=\left(3+1\right)+\left(-2\sqrt{2}+2\sqrt{2}\right)\)

\(=4+0=4\)

1 tháng 10 2021

\(a,\sqrt{3+2\sqrt{2}}\)\(+\sqrt{6-4\sqrt{2}}\)

\(=\sqrt{\left(\sqrt{2}+1\right)^2}\)\(+\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(=\sqrt{2}\)\(+1+2-\sqrt{2}\)

\(=\left(\sqrt{2}-\sqrt{2}\right)+1+2\)

\(=0+1+2=3\)

2 tháng 10 2021

a)     \(\sqrt{3+2\sqrt{2}}\)+\(\sqrt{6-4\sqrt{2}}\)

         =\(\sqrt{\left(\sqrt{2}+1\right)^2}\)+\(\sqrt{\left(2-\sqrt{2}\right)^2}\)=\(\sqrt{2} +1+2-\sqrt{2}\)=3

b)\(\left(\sqrt{5}-2\sqrt{6}+\sqrt{2}\right)\sqrt{3}\)

=\((\sqrt{\left(\sqrt{3})-\sqrt{2}\right)^2}+\sqrt{2})\sqrt{3}\)
=\(\left(\sqrt{3}-\sqrt{2}+\sqrt{2}\right)\sqrt{3}\)

=\(\sqrt{3}.\sqrt{3}=3\)