phương trình mcosx+1=0 có nghiệm khi m thỏa mãn điều kiện nào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi H là trung điểm của SC
Ta có:
DGDH=23(1)DGDH=23(1)
BC∥AD⇒ODOB=OAOC=ADBC=2BC∥AD⇒ODOB=OAOC=ADBC=2
⇒OD=2OB⇒OD=2OB
⇒ODBD=23(2)⇒ODBD=23(2)
Từ (1) và (2) ⇒DGDH=ODBD⇒OG∥BH⇒DGDH=ODBD⇒OG∥BH
BH⊂(SBC)⇒OG∥(SBC)BH⊂(SBC)⇒OG∥(SBC)
b) Gọi M’ là trung điểm của SA⇒MM′∥ADSA⇒MM′∥AD và MM′=AD2MM′=AD2. Mặt khác vì BC∥ADBC∥AD và BC=AD2BC=AD2 nên BC∥MM′BC∥MM′ và BC=MM′BC=MM′.
Do đó tứ giác BCMM’ là hình bình hành ⇒CM∥BM′⇒CM∥BM′ mà BM′⊂(SAB)BM′⊂(SAB)
⇒CM∥(SAB)⇒CM∥(SAB)
c) Ta có: OCOA=12OCOA=12 nên OCCA=13OCCA=13. Mặt khác vì SC=32SISC=32SI nên CICS=13CICS=13.
OCCA=CICS⇒OI∥SAOCCA=CICS⇒OI∥SA
OI⊂(BID)⇒SA∥(BID)
Hai tam giác CBA và DBA là hai tam giác đều cạnh a
=> ∆ CBA = ∆ DBA ( c.c.c)
=> CM = DM ( 2 đường trung tuyến tương ứng)
=> Tam giác CMD cân tại M.
Lại có: MN là đường trung tuyến nên đồng thời là đường cao: MN ⊥ CD
* Chứng minh tương tự, ta có: MN ⊥ AB
Do đó, MN là đoạn vuông góc chung của AB và CD.
* Tam giác BCD là tam giác đều cạnh a nên
\(BN=\sqrt{BC^2-CN^2}=\frac{a\sqrt{3}}{2}\)
Bài này học rồi mà bà