P=\(\frac{x+2\sqrt{x}-10}{x-\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{3-\sqrt{x}}.\)
a) Rút gọn P
b)Tính giá trị của P tại \(x=1-\frac{\sqrt{3}}{2}\)
c)Chứng minh rằng P chỉ nhận một giá trị nguyên duy nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=\frac{2\sin30^o-2\sin30^o\cos30^o}{\cos^230^o-\left(\cos^230^o-\sin^230^o\right)}=\frac{2\sin30^o\left(1-\cos30^o\right)}{\sin^230^o}=\)
\(=\frac{2\left(1-\cos30^o\right)}{\sin30^o}=\frac{2\left(1-\frac{\sqrt{3}}{2}\right)}{\frac{1}{2}}=2-\sqrt{3}\)
ĐK: \(x\ge0,x\ne9\).
\(P=\frac{x+2\sqrt{x}-10}{x-\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{3-\sqrt{x}}\)
\(=\frac{x+2\sqrt{x}-10}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\frac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+2\sqrt{x}-10+x-6\sqrt{x}+9-x+4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x-4\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
Tại \(x=1-\frac{\sqrt{3}}{2}\): \(\sqrt{x}=\sqrt{1-\frac{\sqrt{3}}{2}}=\frac{1}{2}\sqrt{4-2\sqrt{3}}=\frac{1}{2}\sqrt{\left(\sqrt{3}-1\right)^2}=\frac{1}{2}\left(\sqrt{3}-1\right)\)
\(P=\frac{\sqrt{3}-1-2}{\sqrt{3}-1+4}=\frac{\sqrt{3}-3}{\sqrt{3}+3}=-2+\sqrt{3}\).
\(P=\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{\sqrt{x}+2-3}{\sqrt{x}+2}=1-\frac{3}{\sqrt{x}+2}\)
Dễ thấy \(P< 1\).
\(\sqrt{x}+2\ge2\Rightarrow\frac{3}{\sqrt{x}+2}\le\frac{3}{2}\Rightarrow P\ge1-\frac{3}{2}=-\frac{1}{2}\)
Suy ra \(-\frac{1}{2}\le P< 1\)do đó \(P\)chỉ có thể nhận \(1\)giá trị nguyên duy nhất là \(P=0\).
Với \(P=0\Rightarrow x=1\).
Do đó ta có đpcm.