Tìm ĐKXĐ cuả các biểu thức sau :
\(a,\left(\sqrt{3}-x\right)^2\)
\(b,\sqrt{x^2+2x+1}\)
\(c,\frac{16x-1}{\sqrt{x-7}}\)
\(d,\frac{3}{\sqrt{12x-1}}\)
\(e,\sqrt{\sqrt{5}-\sqrt{3}x}\)
\(g,\sqrt{\frac{\sqrt{6}-4}{m+2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\sqrt{x}-13}{\sqrt{x}+3}=\frac{\sqrt{x}+3-16}{\sqrt{x}+3}=1-\frac{16}{\sqrt{x}+3}\)
vì \(\sqrt{x}+3\ge3\Rightarrow\frac{-16}{\sqrt{x}+3}\le-\frac{16}{3}\Rightarrow\frac{-16}{\sqrt{x}+3}+1\le-\frac{13}{3}\)
Dấu ''='' xảy ra khi x = 0
Vậy GTLN của A bằng -13/3 tại x = 0
Đáp án:
Giải thích các bước giải:
1. Xét tứ giác CEHD có :
CEH = 90 ( BE là đường cao )
CDH = 90 ( AD là đường cao )
⇒ CEH + CDH = 90 + 90 = 180
Mà CEH và CDH là hai góc đối của tứ giác CEHD
⇒ CEHD là tứ giác nội tiếp (đpcm)
2. BE là đường cao ( gt )
⇒ BE ⊥ AB ⇒ BFC = 90
Như vậy E và F cùng nhìn BC dưới một góc 90 ⇒ E và F cùng nằm trên (O) đường kính AB
⇒ 4 điểm B, C, E, F cùng nằm trên một đường tròn (đpcm)
3. Xét ΔAEH và ΔADC có :
AEH = ADC (=90)
A chung
⇒ ΔAEH ~ ΔADC
⇒ AE/AD = AH/AC
⇒ AE.AC = AH.AD
Xét ΔBEC và ΔADC có :
BEC = ADC (=90)
C chung
⇒ ΔBEC ~ ΔADC
⇒ AE/AD = BC/AC
⇒ AD.BC = BE.AC (đpcm)
4. Có : C1 = A1 (cùng phụ góc ABC)
C2 = A1 ( hai góc nối tiếp chắn cung BM )
⇒ C1 = C2 ⇒ CB là tia phân giác HCM
Lại có : CB ⊥ HM
⇒ Δ CHM cân tại C
⇒ CB là đường trung trực của HM
⇒ H và M đối xứng nhau qua BC (đpcm)
5. Có : Bốn điểm B,C,E,F cùng nằm trên một đường tròn ( câu 2 )
⇒ C1 = E1 (hai góc nội tiếp cùng chắn BF) (*)
Có : Tứ giác CEHD nội tiếp (câu 1)
⇒ C1 = E2 (hai góc nội tiếp cùng chắn cung HD ) (**)
Từ (*) và (**) ta suy ra :
E1 = E2
⇒ EB là tia phân giác DEF
Cm tương tự ta được : FC là tia phân giác của DFE
Mà BE và CF cắt nhau tại H
⇒ H là tâm của đường tròn nội tiếp ΔDEF
Bài 3:
1. Vì CM,CA là tiếp tuyến của (O)
\(\rightarrow OC\) là phân giác \(\widehat{AOM},CM=CA\)
Tương tự \(OD\) là phân giác \(\widehat{BOM},DM=DB\)
\(\rightarrow AC+BD=CM+DM=DB\)
2. Từ câu 1:
\(\rightarrow\widehat{COD}=\widehat{COM}+\widehat{MOD}=\frac{1}{2}\widehat{AOM}+\frac{1}{2}\widehat{MOB}=90^o\)
3. Ta có:
\(OC\perp OD,OM\perp CD\rightarrow CM.DM=OM^2\)
Mà \(AC=CM,DM=DB,OM=R\rightarrow AC.BD=R^2=\frac{AB^2}{4}\)
4. Vì \(CA,CM\) là tiếp tuyến của (O)
\(\rightarrow OC\perp AM\)
Mà \(AM\perp BM\) vì AB là đường kính của (O)
\(\rightarrow OC//BM\)
5. Lấy I là trung điểm CD vì \(\widehat{COD}=90^o\rightarrow\left(I,IO\right)\) là đường tròn đường kính CD
Mà O là trung điểm AB, \(AC//DB\left(\perp AB\right)\)
\(\rightarrow IO\) là đường trung bình hình thang \(\text{◊}ABCD\)
\(\rightarrow IO//AC\rightarrow IO\perp AB\)
\(\rightarrow AB\) là tiếp tuyến của (I,IO)
Hay AB là tiếp tuyến của đường tròn đường kính CD
6. Ta có : \(AC//BD,CM,CA,DM,DA\)
\(\rightarrow\frac{NA}{ND}=\frac{AC}{BD}=\frac{CM}{MD}\)
\(MN//AC\rightarrow MN\perp AB\left(AC\perp AB\right)\)
7. Để \(ABCD\) có chu vi nhỏ nhất
\(\rightarrow AB+BD+AC+CD\) nhỏ nhất
\(\rightarrow AB+CD+CD\) nhỏ nhất
\(\rightarrow AB+2CD\) nhỏ nhất
\(\rightarrow CD\) nhỏ nhất
Mà \(CD\ge AB\) vì \(ABCD\) là hình thang vuông tại A,B
Dấu = xảy ra khi \(CD//AB\rightarrow M\) nằm giữa A và B
ĐKXĐ: x≥2
A=√x+2√2x−4+√x−2√2x−4
=√x−2+2.√x−2.√2+2+√x−2−2.√x−2.√2+2
=√(√x−2+√2)2+√(√x−2−√2)2
=|√x−2+√2|+|√x−2−√2|=√x−2+√2+|√x−2−√2|
Xét x≥4⇒√x−2≥√2
⇒A=√x−2+√2+√x−2−√2=2√x−2
Xét 0≤x<4⇒√x−2<√2
⇒A=√x−2+√2−√x−2+√2=2√2
a, tự vẽ
b, Hoành độ giao điểm thỏa mãn phương trình
\(2x+3=-x\Leftrightarrow3x=-3\Leftrightarrow x=-1\Rightarrow y=1\)
Vậy \(x=-1;y=1\)
\(\sqrt{12}\)\(.\sqrt{45}.\sqrt{60}\)=\(\sqrt{12.45.60}\)= \(180\)