1-2+3-4+5-6+7-8+...+2023-2024
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(p^2-4=\left(p-2\right)\left(p+2\right)\) có ít nhất 2 ước là \(p-2\) và \(p+2\) nên nó là số nguyên tố khi và chỉ khi \(p-2=1\) đồng thời \(p+2\) là số nguyên tố
\(\Rightarrow p=2+1=3\) (thỏa mãn)
Thay vào kiểm tra ta thấy \(p^2+4=3^2+4=13\) cũng là số nguyên tố
Vậy \(p=3\)
Nếu p = 2 ⇒ p2 + 4 = 4 + 4 = 8 (loại)
Nếu p = 3 ⇒ p2 + 4 = 32 + 4 = 9 + 4 = 13 (nhận)
p = 3 ⇒ p2 - 4 = 32 - 4 = 9 - 4 = 5 (nhận)
Nếu p > 3 Thì p không chia hết cho 3;
⇒ p2 : 3 dư 1 (tính chất số chính phương)
⇒ p2 - 4 ⋮ 3 (loại)
Vậy p = 3
Ta có: \(\left(x+3\right)\left(y-7\right)=17\)
Vì \(x,y\) nguyên nên \(x+3;y-7\) có giá trị nguyên
\(\Rightarrow x+3;y-7\) là các ước của \(17\)
Ta có bảng sau:
x + 3 | 1 | 17 | -1 | -17 |
y - 7 | 17 | 1 | -17 | -1 |
x | -2 | 14 | -4 | -20 |
y | 24 | 8 | -10 | 6 |
Vì \(x,y\) nguyên nên ta được các cặp giá trị \(\left(x;y\right)\) là:
\(\left(-2;24\right);\left(14;8\right);\left(-4;-10\right);\left(-20;6\right)\)
\(Toru\)
S = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023) (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0
S = (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... + (2017 + 2018 - 2019 - 2020) + (2021 - 2022 + 2023) (nhóm các số hạng vào 505 nhóm, mỗi nhóm có 4 số hạng, thừa ra 3 số hạng nhóm vào 1 nhóm là 506 nhóm)
S = -4 + (-4) + ... + (-4) + 2022
S = -4 x 505 + 2022
S = -2022 + 2022
S = 0
a ( x + 2 ) = 25 : 5
x + 2 = 5
x = 5 - 2
x = 3
Mình đang bận nên ko làm nhiều dc , xin lỗi
(2x + 1)(y + 5) = 24
Vì x, y ϵ N
⇒ 2x + 1; y + 5 ϵ N
⇒ 2x + 1; y + 5 ϵ Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}
Ta có: 2x + 1 là số lẻ
⇒ 2x + 1 ϵ {1; 3}
Ta có bảng sau:
2x + 1 | 1 | 3 |
y + 5 | 24 | 8 |
x | 0 | 1 |
y | 19 | 3 |
(2x + 1)(y + 5) = 24
Vì x, y ϵ N
⇒ 2x + 1; y + 5 ϵ N
⇒ 2x + 1; y + 5 ϵ Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}
Ta có: 2x + 1 là số lẻ
⇒ 2x + 1 ϵ {1; 3}
Ta có bảng sau:
2x + 1 | 1 | 3 |
y + 5 | 24 | 8 |
x | 0 | 1 |
y | 19 | 3 |
Gọi số học sinh của trường là x (học sinh); x ϵ N*
Theo đề bài, ta có:
x ⋮ 11
x < 1000
x - 3 ⋮ 10; ⋮ 12; ⋮ 15
⇒ x ϵ Ư (11)
x - 3 ϵ ƯC (10, 12, 15)
Ta có: 10 = 2 x 5
Gọi số học sinh của trường là x (học sinh); x ϵ N*
Theo đề bài, ta có:
x ⋮ 11
x < 1000
x - 3 ⋮ 10; ⋮ 12; ⋮ 15
⇒ x ϵ Ư (11)
x - 3 ϵ ƯC (10, 12, 15)
Ta có: 10 = 2 x 5
Bài 1:
$10+3(x-6)=5^{10}:5^8=5^2=25$
$3(x-6)=25-10=15$
$x-6=15:3=5$
$x=5+6=11$
Bài 2:
a. $100-[150-8(7-4)^2]=100-(150-8.3^2)=100-150+8.3^2$
$=-50+72=72-50=22$
b. $=-999-23+999-10-67=(-999+999)-10-(67+23)$
$=0-10-90=-(10+90)=-100$
1-2+3-4+5-6+7-8+...+2023-2024
=(1−2)+(3−4)+(5−6)+(7−8)+....+(2023−2024)=(1−2)+(3−4)+(5−6)+(7−8)+....+(2023−2024)
=−1+(−1)+(−1)+(−1)+...+(−1)=−1+(−1)+(−1)+(−1)+...+(−1)
=−1.1012=−1.1012
=−1012=−1012
1-2+3-4+5-6+ ... +2023-2024
= (-1) + (-1) + ... + (-1) (1012 số)
= (-1).1012
= -1012