K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2024

Số số hạng của dãy số là:

\(\left(198-2\right):2+1=99\) (số)

Tổng các số hạng trong dãy là:

\(\left(198+2\right)\times99:2=9900\)

Trung bình cộng của các số trong dãy là:

\(9900:99=100\)

Đáp số: 100

DT
19 tháng 6 2024

Các số chẵn từ 2 đến 198 là: 2; 4; 6; 8; ....; 196; 198

Dãy trên là dãy cách đều 

Do đó TBC dãy trên là:

  (198 + 2) : 2 = 100

DT
19 tháng 6 2024

2x2 - 18x + 6x -6 = 16 + 25

2x2 - 12x -47 =0

\(x=\pm\dfrac{\sqrt{130}+6}{2}\)

DT
19 tháng 6 2024

Hằng đẳng thức: \(a^2+2ab+b^2=\left(a+b\right)^2\)

Cách chứng minh: \(VT=\left(a^2+ab\right)+\left(ab+b^2\right)=a\left(a+b\right)+b\left(a+b\right)\\ =\left(a+b\right)\left(a+b\right)=\left(a+b\right)^2=VP\)

Áp dụng:

Kiểu đề 1: \(2x\left(x-9\right)+3\left(2x\right)-6=4^2+5^2\\ \Rightarrow2x^2-18x+6x-6=16+25\\ \Rightarrow2x^2-12x-47=0\\ \Rightarrow x^2-6x-\dfrac{47}{2}=0\\ \Rightarrow\left(x^2-2.x.3+3^2\right)-9-\dfrac{47}{2}=0\\ \Rightarrow\left(x-3\right)^2=\dfrac{65}{2}=\left(\dfrac{\pm\sqrt{130}}{2}\right)^2\\\)

\(\Rightarrow\left[{}\begin{matrix}x-3=\dfrac{\sqrt{130}}{2}\\x-3=\dfrac{-\sqrt{130}}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{6+\sqrt{130}}{2}\\x=\dfrac{6-\sqrt{130}}{2}\end{matrix}\right.\)

Kiểu đề 2: \(2x\left(x-9\right)+3\left(2x-6\right)=4^2+5^2\\ \Rightarrow2x^2-18x+6x-18=16+25\\ \Rightarrow2x^2-12x-59=0\\ \Rightarrow x^2-6x-\dfrac{59}{2}=0\\ \Rightarrow\left(x^2-2.x.3+3^2\right)-9-\dfrac{59}{2}=0\\ \Rightarrow\left(x-3\right)^2=\dfrac{77}{2}=\left(\dfrac{\pm\sqrt{154}}{2}\right)^2\\ \)

\(\Rightarrow\left[{}\begin{matrix}x-3=\dfrac{\sqrt{154}}{2}\\x-3=\dfrac{-\sqrt{154}}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{6+\sqrt{154}}{2}\\x=\dfrac{6-\sqrt{154}}{2}\end{matrix}\right.\)

19 tháng 6 2024

làm phần c thôi nhé

19 tháng 6 2024

\(\left(x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2=0\)

Nhận xét:

\(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0,\forall x\\\left(y+\dfrac{1}{2}\right)^2\ge0,\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2\ge0,\forall x,y\)

Dấu \("="\) xảy ra khi:

\(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+\dfrac{1}{2}=0\end{matrix}\right.\)

\(\Rightarrow x=\dfrac{1}{2};y=-\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2};y=-\dfrac{1}{2}\)

19 tháng 6 2024

\(\left(x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+\dfrac{1}{2}\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)

19 tháng 6 2024

Xét tam giác ABC vuông tại A. Đặt \(\widehat{B}=a\left(0^o< a< 90^o\right)\) 

Khi đó ta có \(\tan a=\dfrac{\sin a}{\cos a}=\dfrac{AC}{AB}< 1\) (vì \(\cos a>\sin a\))

\(\Rightarrow AC< AB\)

\(\Rightarrow\widehat{B}< \widehat{C}\) (quan hệ giữa góc và cạnh đối diện trong tam giác)

Lại có \(\widehat{B}+\widehat{C}=90^o>\widehat{B}+\widehat{B}=2\widehat{B}\)  nên \(\widehat{B}=a< 45^o\).

Ta có đpcm.

 

19 tháng 6 2024

Cửa hàng đã bán tất cả số chai dầu là:

10 x 6 = 60 (chai)

ĐS: 60 chai 

19 tháng 6 2024

                                             Bài giải

                      Cửa hàng đó bán được số chai dầu là :

                                        10 x 6 = 60 (chai)

                                                   Đáp số : 60 chai dầu .

19 tháng 6 2024

 Chọn hệ trục tọa độ Mxyz (M là gốc tọa độ) sao cho Mx trùng với tia MB, My trùng với tia MA và Mz cùng phương với BB' sao cho \(\overrightarrow{BB'}\) hướng theo chiều dương của Mz. 

 Gọi chiều cao lăng trụ là \(h>0\)

 Khi đó \(B\left(a;0;0\right)\)\(C'\left(-a;0;h\right)\)\(A'\left(0;a\sqrt{3};h\right)\)

 Ta có \(\overrightarrow{MC'}=\left(-a;0;h\right),\overrightarrow{BA'}=\left(-a;a\sqrt{3};h\right)\)

\(\Rightarrow\left[\overrightarrow{MC'},\overrightarrow{BA'}\right]=\left(-ah\sqrt{3};0;a^2\sqrt{3}\right)\)

\(\Rightarrow\left|\left[\overrightarrow{MC'},\overrightarrow{BA'}\right]\right|=\sqrt{\left(-ah\sqrt{3}\right)^2+\left(a^2\sqrt{3}\right)^2}=a\sqrt{3h^2+3a^2}\)

Lại có \(\overrightarrow{MB}=\left(a;0;0\right)\)

\(\Rightarrow\left[\overrightarrow{MC'},\overrightarrow{BA'}\right].\overrightarrow{MB}=-a^2h\sqrt{3}\)

\(\Rightarrow d\left(MC',BA'\right)=\dfrac{\left|\left[\overrightarrow{MC'},\overrightarrow{BA'}\right].\overrightarrow{MB}\right|}{\left|\left[\overrightarrow{MC'},\overrightarrow{BA'}\right]\right|}\) \(=\dfrac{a^2h\sqrt{3}}{a\sqrt{3a^2+3h^2}}=\dfrac{ah}{\sqrt{a^2+h^2}}\)

Theo đề bài, ta có: \(\dfrac{ah}{\sqrt{a^2+h^2}}=\dfrac{a}{2}\) 

\(\Leftrightarrow\dfrac{h}{\sqrt{a^2+h^2}}=\dfrac{1}{2}\)

\(\Leftrightarrow2h=\sqrt{a^2+h^2}\) 

\(\Leftrightarrow4h^2=a^2+h^2\)

\(\Leftrightarrow3h^2=a^2\)

\(\Leftrightarrow h=\dfrac{a}{\sqrt{3}}\)

\(\Rightarrow V=S_đ.h=\dfrac{\left(2a\right)^2\sqrt{3}}{4}.\dfrac{a}{\sqrt{3}}=a^3\)

Vậy thể tích lăng trụ bằng \(a^3\)

 

19 tháng 6 2024

a)

\(\dfrac{x^4+12x^2-5x}{-x}=-\dfrac{x^4}{x}-\dfrac{12x^2}{x}+\dfrac{-5x}{-x}=-x^3-12x+5\)

b)

\(\dfrac{15x^5y^9-10x^3y^5+25x^4y^4}{5x^2y^2}=\dfrac{15x^5y^9}{5x^2y^2}-\dfrac{10x^3y^5}{5x^2y^2}+\dfrac{25x^4y^4}{5x^2y^2}=3x^3y^7-2xy^3+5x^2y^2\)

19 tháng 6 2024

`a)`

`(x^4 + 12x^2 -5x):(-x)`

`=[x^4 : (-x)] + [12x^2 : (-x)] - [5x:(-x)]`

`=-x^3 - 12x + 5`

`b)`

`(15 x^5 y^9 - 10 x^3 y^5 + 25 x^4 y^4) : 5x^2 y^2`

`=(15 x^5 y^9 : 5 x^2 y^2) - (10 x^3 y^5 : 5x^2 y^2) + (25 x^4 y^4 : 5 x^2 y^2)`

`=3 x^3 y^7 - 2 x y^3 + 5 x^2 y^2`

19 tháng 6 2024

4)

Ta có:

AM // BD (cmt)

AO ⊥ AM (do MA là tiếp tuyến của (O) tại A)

⇒ AO ⊥ BD tại K

⇒ K là trung điểm của BD

Áp dụng định lý Thales đảo vào ∆AMT và ∆TBD, ta có:

loading...loading...loading...  Xét ∆ATI và ∆BTK có:

loading... ∠IAT = ∠KBT (so le trong)

⇒ ∆ATI ∽ ∆BTK (c-g-c)

⇒ ∠ATI = ∠BTK

⇒ ∠ATI và ∠BTK đối đỉnh

⇒ I, T, K thẳng hàng

⇒ T ∈ IK

⇒ MD, AB, IK đồng quy tại T