Cho AD // BC và AB // CD. Qua giao điểm M của AC và BD, kẻ một đường thẳng bất kì cắt AD,BC theo thứ tự ở K,E. Chứng minh rằng: AD=BC; MA=MC; MK=ME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(y=\frac{\frac{2}{3}}{x}\)\(;x=\frac{-5}{t}\)\(\Rightarrow y=\frac{\frac{2}{3}}{\frac{-5}{t}}=\frac{2}{3}\times\frac{t}{-5}=\frac{2t}{-15}=\frac{t}{-7,5}=t\times\frac{1}{-7,5}\)
\(\Rightarrow\)y tỉ lệ thuận với t
a) Ta có:\(8\left(x-2019\right)^2⋮8\Rightarrow25-y^2⋮8\)\(\left(1\right)\)
Mặt khác: \(8\left(x-2019\right)^2\ge0\Rightarrow25-y^2\ge0\)\(\left(2\right)\)
Từ\(\left(1\right),\left(2\right)\)ta có: \(y^2=1;9;25\)
Xét:\(y^2=1\Rightarrow8\left(x-2019\right)^2=24\Rightarrow\left(x-2019\right)^2=3\left(ktm\right)\)
\(y^2=9\Rightarrow8\left(x-2019\right)^2=16\Rightarrow\left(x-2019\right)^2=2\left(ktm\right)\)
\(y^2=25\Rightarrow8\left(x-2019\right)^2=0\Rightarrow\left(x-2019\right)^2=0\Rightarrow x-2019=0\Rightarrow x=2019\left(tm\right)\)
Vậy \(y=5;x=2019\)
\(y=-5;x=2019\)
\(\left|y-2018\right|=2018-y\)
\(\left|y-2018\right|\ge0\Rightarrow2018-y\ge0\Rightarrow y\le2018\)
\(\Leftrightarrow\orbr{\begin{cases}y-2018=2018-y\\-y+2018=2018-y\end{cases}}\Leftrightarrow\orbr{\begin{cases}2y=2.2018\\0=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=2018\left(TMĐK\right)\\y\le2018\end{cases}}}\)
cái đề bị làm sao ko bn(hay boul :D) ??? x,y thuộc N chứ ????? ( y bé hơn hoặc bằng 2018)
coi nha: \(y=-5\Rightarrow2018-\left(-5\right)=2023=2^x+2019\Rightarrow2^x=4\Rightarrow x=2\)
\(y=-9\Rightarrow2018-y=2018-\left(-9\right)=2027\Rightarrow2^x=8\Rightarrow x=3\)
\(y=-17\Rightarrow2018-\left(-17\right)=2035=2^x+2019\Rightarrow2^x=16\Rightarrow x=4\)
xét đến mai ????
còn nếu x,y thuộc N:
\(y\le2018\left(\text{lúc nãy chứng minh rồi}\right)\Rightarrow0\le y\le2018\left(\text{vì y thuộc N}\right)\Rightarrow2018-y\le2018\)
\(2^x+2019\ge2020\)=> ko có g/trị x và y nào đồng thời t/m \(2^x+2019=\left|y-2018\right|=2018-y\)
p/s: có gì sai bỏ qua :)