Giải phương trinh (3x-2)(4-3x)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a+bc/b+c + b+ca/c+a + c+ab/a+b
ta có: a+bc/c+b = a+(1-a-c).c/(1-a-c)+c = a+c-ac-c^2/1-a = (a+c)-c(a+c)/1-a = (a+c)(1-c)/1-a = (1-b)(1-c)/1-a
tương tự với các phân số còn lại:
ta đc:H=(1-b)(1-c)/1-a + (1-a)(1-c)/1-b + (1-a)(1-b)/1-c
đặt 1-a=x, 1-b=y, 1-c=z =>
yz/x + xz/y + xy/z
áp dụng bđt cô-sin =>
yz/x + xz/y >= 2 căn yz/x . xz/y=2z
tương tự => xz/y + xy/z >= 2x và xy/z + yz/x >= 2y
=> 2H >= 2(x+y+z) = 2(1-a + 1-b + 1-c)=2(3 - (a+b+c))=2(3-1)=2.2=4
=> H>= 2
=> bt trên >= 2
a+bc/b+c + b+ca/c+a + c+ab/a+b ta có: a+bc/c+b = a+(1-a-c).c/(1-a-c)+c = a+c-ac-c^2/1-a = (a+c)-c(a+c)/1-a = (a+c)(1-c)/1-a = (1-b)(1-c)/1-a tương tự với các phân số còn lại: ta đc:H=(1-b)(1-c)/1-a + (1-a)(1-c)/1-b + (1-a)(1-b)/1-c đặt 1-a=x, 1-b=y, 1-c=z => yz/x + xz/y + xy/z áp dụng bđt cô-sin => yz/x + xz/y >= 2 căn yz/x . xz/y=2z tương tự => xz/y + xy/z >= 2x và xy/z + yz/x >= 2y => 2H >= 2(x+y+z) = 2(1-a + 1-b + 1-c)=2(3 - (a+b+c))=2(3-1)=2.2=4 => H>= 2 => bt trên >= 2
Ta có :
\(\left(3x-2\right)\left(4-3x\right)>0\)
Trường hợp 1 :
\(\hept{\begin{cases}3x-2>0\\4-3x>0\end{cases}\Leftrightarrow\hept{\begin{cases}3x>2\\3x< 4\end{cases}\Leftrightarrow}\hept{\begin{cases}x>\frac{2}{3}\\x< \frac{4}{3}\end{cases}}}\)
\(\Rightarrow\)\(\frac{2}{3}< x< \frac{4}{3}\)
Trường hợp 2 :
\(\hept{\begin{cases}3x-2< 0\\4-3x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}3x< 2\\3x>4\end{cases}\Leftrightarrow}\hept{\begin{cases}x< \frac{2}{3}\\x>\frac{4}{3}\end{cases}}}\)
\(\Rightarrow\)\(x\in\left\{\varnothing\right\}\)
Vậy \(\frac{2}{3}< x< \frac{4}{3}\) ( nếu x là số nguyên thì \(x=1\)nhé )
Chúc bạn học tốt ~
Ta có : 3x − 2 4 − 3x > 0 Trường hợp 1 : 3x − 2 > 0 4 − 3x > 0 ⇔ 3x > 2 3x < 4 ⇔ x > 3 2 x < 3 4 ⇒ 3 2 < x < 3 4
Trường hợp 2 : 3x − 2 < 0 4 − 3x < 0 ⇔ 3x < 2 3x > 4
⇔ x < 3 2 x > 3 4 ⇒ x ∈ ∅
Vậy 3 2 < x < 3 4 ( nếu x là số nguyên thì x = 1 nhé ) Chúc bạn học tốt ~