Tìm x nguyên sao cho \(\sqrt{x-4\sqrt{x-19}}\)nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2\left(m+1\right)x+m-4=0\)
( a = 1 , b = -2(m+1) , c = m - 4 )
\(\Delta=b^2-4ac\)
\(=\left[-2\left(m+1\right)\right]^2-4.1.\left(m-4\right)\)
\(=4\left(m^2+2m+1\right)-4m+16\)
\(=4m^2+8m+4-4m+16\)
\(=4m^2+4m+20\)
\(=4m^2+4m+1^2-1^2+20\)
\(=\left(2m+1\right)^2+19>0\)với mọi m
Vậy pt có 2 nghiệm pb với mọi m
Ta có: \(P=x_2.x_1=\frac{c}{a}=\frac{m-4}{1}=m-4\)
Để có 2 no cùng dấu thì \(\hept{\begin{cases}\Delta\ge0\\P>0\end{cases}}\)
\(P>0\Leftrightarrow m-4>0\Leftrightarrow m>4\)
\(1+1=2\)
Nhớ k cho mình và kết bạn nữa nhé ! Chúc bạn học giỏi nha !!!!!!!!!!!!!!
Giải:
Ta có: \(x^3-mx=0\)
\(\Leftrightarrow x\left(x^2-m\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-m=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=m\end{cases}}\)
Để phương trình có 3 nghiệm phân biệt thì \(m>0\)
Vậy giá trị nguyên nhỏ nhất \(m=1\)
=0,5
Vì có gtnn khi xy=yz=zx=1:9 => x=y=z=1:3
Thay số và tính được gtnn là A=0.5