(vẽ hình) cho đường tròn tâm O, bán kính R,dây cung ab=R trên tia đối của BA lấy C sao cho BC=BA tia CO cắt đường tròn tâm O tại D biết R=3cm
a) tính ACD
b) tính CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian ô tô đi trên quãng đường AB là x(giờ)
(Điều kiện: x>0)
30p=0,5 giờ
Thời gian ô tô đi trên quãng đường BC là x+0,5(giờ)
Độ dài quãng đường AB là 50x(km)
Độ dài quãng đường BC là 45(x+0,5)(km)
Tổng độ dài là 165km nên ta có:
\(50x+45\left(x+0,5\right)=165\)
=>50x+45x+22,5=165
=>95x=165-22,5=142,5
=>x=1,5(nhận)
vậy: Thời gian ô tô đi trên quãng đường AB là 1,5 giờ
Thời gian ô tô đi trên quãng đường BC là 1,5+0,5=2 giờ
a: ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}=90^0-37^0=53^0\)
Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}\)
=>\(BC=\dfrac{AB}{sinACB}=\dfrac{6}{sin53}\simeq7,51\left(cm\right)\)
ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(AC=\sqrt{BC^2-AB^2}\simeq4,52\left(cm\right)\)
b: Xét tứ giác AEHF có \(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
nên AEHF là hình chữ nhật
=>AH=EF(3)
Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1),(2),(3) suy ra \(EF^2=AE\cdot AB=AF\cdot AC\)
Giải:
a; \(\widehat{A}\) + \(\widehat{B}\) + \(\widehat{C}\) = 1800 (tổng ba góc trong một tam giác)
⇒ \(\widehat{C}\) = 1800 - \(\widehat{A}\) - \(\widehat{B}\) = 1800 - 900 - 600 = 300
Áp dụng công thức: cos\(\widehat{ABC}\) = \(\dfrac{AB}{BC}\) ⇒ AB = BC.cos\(\widehat{ABC}\)
⇒ AB = 6.cos 600 = 6. \(\dfrac{1}{2}\) = 3
Vậy AB = 3cm
Áp dụng công thức: sin \(\widehat{ABC}\) = \(\dfrac{AC}{BC}\) ⇒ AC = BC.sin \(\widehat{ABC}\)
⇒ AC = 3.sin 600 = 6.\(\dfrac{\sqrt{3}}{2}\) = 3\(\sqrt{3}\)
Diện tích tam giác ABC là: 3\(\sqrt{3}\) x 3 : 2 = \(\dfrac{9\sqrt{3}}{2}\) (cm2)
b; Độ dài đường cao AH là: \(\dfrac{9\sqrt{3}}{2}\) .2 : 6 = \(\dfrac{3\sqrt{3}}{2}\) (cm)
Xét tam giác vuông HAC vuông tại H
Theo pytago ta có: AH2 + HC2 = AC2
⇒ HC2 = AC2 - AH2 = (3\(\sqrt{3}\))2 - (\(\dfrac{3\sqrt{3}}{2}\))2 = \(\dfrac{81}{4}\)
HC = \(\sqrt{\dfrac{81}{4}}\) = \(\dfrac{9}{2}\) (cm)
Kết luận: a; góc C là 300; Độ dài AB; AC; AH; HC lần lượt là:
3cm ; 3\(\sqrt{3}\)cm; \(\dfrac{3\sqrt{3}}{2}\)cm; \(\dfrac{9}{2}\)cm
a: Xét ΔOAB có OA=OB=AB
nên ΔOAB đều
=>\(\widehat{OBA}=\widehat{OAB}=\widehat{AOB}=60^0\)
Xét ΔBCO có BC=BO
nên ΔBCO cân tại B
Xét ΔBCO có \(\widehat{ABO}\) là góc ngoài tại B
nên \(\widehat{ABO}=\widehat{BOC}+\widehat{BCO}\)
=>\(2\cdot\widehat{ACD}=60^0\)
=>\(\widehat{ACD}=\dfrac{60^0}{2}=30^0\)
b: Xét ΔOAC có
OB là đường trung tuyến
\(OB=\dfrac{AC}{2}\)
Do đó: ΔOAC vuông tại O
BA=BC
mà BA=3cm
nên BC=3cm
AC=3+3=6(cm)
ΔOAC vuông tại O
=>\(OA^2+OC^2=AC^2\)
=>\(OC=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)
OD+DC=OC
=>\(DC=OC-OD=3\sqrt{3}-3\left(cm\right)\)