Cho tam giác ABC cân đỉnh A .Trên cạnh đáy BC lấy các điểm D và E sao cho góc BAD = góc DAE = góc EAC . Gọi M là trung điểm của BC
a) CMR : AM vuông góc với DE
b) So sánh AB và AD
c) CMR : BD>DE
giải nhanh hộ mình với các bạn <3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a Xét ΔDBEΔDBE và ΔECFΔECF có :
Vì BE = CF và BC = AC
⇒⇒ CE = FA
BE = CF (gt)
Ta có CBAˆ+DBEˆ=FCEˆ+ACBˆCBA^+DBE^=FCE^+ACB^ (2 góc kề bù)
⇒FCEˆ=DBEˆ⇒FCE^=DBE^
⇒ΔDBE=ΔECF⇒ΔDBE=ΔECF (c . g . c)
⇒⇒ DE = EF
Xét ΔDBEΔDBE và ΔAFDΔAFD có :
Vì BE = AD và BA = BC
⇒⇒ FA = BD
BE = AD (gt)
Ta có : EADˆ+CABˆ=DBEˆ+CBAˆEAD^+CAB^=DBE^+CBA^ (kề bù)
⇒⇒ DBEˆ=FADˆDBE^=FAD^
⇒ΔDBE=ΔAFD⇒ΔDBE=ΔAFD (c . g . c)
⇒⇒ DE = DF
Vì DE = DF , DE = EF
⇒⇒ DE = DF = EF (T/C bắc cầu)
⇒ΔFDE⇒ΔFDE là tam giác đều
bạn tự vẽ hình giúp
giải
xét tam giác BOD và AOD có
OA=OB(gt)
góc AOD=góc BOD(vì ot là tpg của góc XOY
OD cạnh chung
=>tam giác BOD =tam giác AOD(c.g.c)
=>OAB=OBA(2 góc tương ứng) (1)
ta lại có: góc O+A+B=180độ
=>góc A+B=130độ (2)
từ 1,2 =>A=B=130độ/2=65độ
ta lại có tam giacs BOD=AOD(cmt)
=>AD=BD
mà ot cắt ab ở d
=>dlaf trung điểm của ab
Tam giác ABC cân tại A \(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{ABC}=\widehat{ABC}\left(1\right)\end{cases}}\)
A là trung điểm của BD => AB = AD mà AB = AC => AD = AC
=> Tam giác CAD cân tại A \(\Rightarrow\widehat{ADC}=\widehat{ACD}\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\widehat{ABC}+\widehat{ADC}=\widehat{ACB}+\widehat{ACD}=\widehat{BCD}\)
Tam giác BDC có : \(\widehat{ABC}+\widehat{ADC}+\widehat{BDC}=180^o\)( Tổng 3 góc trong tam giác ) \(\Rightarrow\widehat{BCD}=\frac{180^o}{2}=90^o\)
Theo định lí tổng ba góc của một tam giác bằng 180 độ: Xét trong tam giác ABC, ta có:
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\Rightarrow\widehat{ABC}+\widehat{ACB}=180^o-\widehat{BAC}\)(1)
Vì BI là phân giác \(\widehat{ABC}\Rightarrow\widehat{IBC}=\frac{1}{2}\widehat{ABC}\)
CI là phân giác \(\widehat{ACB}\Rightarrow\widehat{ICB}=\frac{1}{2}\widehat{ACB}\)
Xét trong tam giác ICB có: \(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^o\Rightarrow\widehat{BIC}=180^o-\widehat{IBC}-\widehat{ICB}=180^o-\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)\)(2)
Từ (1), (2) => \(\widehat{BIC}=180^o-\frac{1}{2}\left(180^o-\widehat{BAC}\right)=90^o+\widehat{BAC}>90^o\)
=> góc BIC là góc tù cũng là góc lớn nhất=> Cạnh BC đối diện góc BIC là cạnh lớn nhất trong tam giác BIC
b) Giả sử IB<IC => \(\widehat{ICB}< \widehat{IBC}\Rightarrow\widehat{ACB}< \widehat{ABC}\Rightarrow AB< AC\)
hết r
Hết
\(225.1=225\)
\(75.3=225\)
\(45.5=225\)
\(25.9=225\)
\(15.15=225\)