Cho DABC nhọn. Các đường cao AD, BE cắt nhau ở H.
a) Chứng minh DAEH đồng dạng với DBDH từ đó suy ra AH.HD = BH.HE
b) Chứng minh góc BAD bằng góc BED.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tự vẽ hình nhé
a) Xét \(\Delta ABD\)và \(\Delta BDC\)có \(\widehat{BAD}=\widehat{CBD}\left(=90\right);\widehat{ADB}=\widehat{BCD}\)(cùng phụ với \(\widehat{BDC}\))
\(\Rightarrow\Delta ABD\infty\Delta BDC\left(g.g\right)\)
b) Áp dụng định lý pytago vào \(\Delta ABD\)có \(BD^2=AB^2+AD^2=16+9=25\Rightarrow BD=5\)
từ \(\Delta ABD\infty\Delta BDC\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow DC=\frac{BD^2}{AB}=\frac{25}{4}\)
vì x > 0 nên 1/x > 0 \(\Rightarrow x+\frac{1}{x}>=2\sqrt{x\frac{1}{x}}=2\cdot\sqrt{1}=2\cdot1=2\)(bđt cosi)
dấu = xảy ra khi \(x=\frac{1}{x}\Rightarrow x^2=1\)vì x>0 \(\Rightarrow x=1\)
vậy min của A là 2 tại x=1
1) Áp dụng BĐT bunhia, ta có
\(P^2\le3\left(6a+6b+6c\right)=18\Rightarrow P\le3\sqrt{2}\)
Dấu = xảy ra <=> a=b=c=1/3
vì a và b là 2 stn liên tiếp suy ra a và b có dạng n và n+1
\(a^2+b^2+c^2\Rightarrow n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2=n^2+\left(n+1\right)^2\left(n^2+1\right)\)
\(=n^2+\left(n^2+2n+1\right)\left(n^2+1\right)=n^2+2n\left(n^2+1\right)+\left(n^2+1\right)^2=\left(n^2+n+1\right)^2\)
\(\Rightarrow\)P là số chính phương (1)
vì a và b là 2 stn liên tiếp nên 1 số chẵn và 1 số lẻ \(\Rightarrow\)a^2+b^2 cũng vậy nên a^2+b^2 lẻ vì c=ab mà 1 trong a b là số chẵn nên c chẵn và c^2 chẵn \(\Rightarrow a^2+b^2+c^2\)lẻ (2)
từ (1) và (2) \(\Rightarrow P\)là số chính phương lẻ
2 SNT liên tiếp là 2 và 3 => a=2, b=3 , c=6 => P=49 là scp lẻ
\(a+1+b+2007⋮6\Rightarrow a+b+2008⋮6\)
vì 2008 chia cho 6 dư 4 nên a+b chia cho 6 phải dư 2
vì 4 chia 6 dư 4 \(\Rightarrow4^a\div6\)dư 4 \(\Rightarrow4^a+a+b\div6\)dư 4+2=6 \(\Rightarrow4^a+a+b⋮6\)
Gọi quãng đường AB là S(km)
Thời gian dự định đi là: \(\frac{S}{30}\left(h\right)\)
Thời gian thực tế đi là: \(\frac{S}{2.30}+\frac{S}{2.36}=\frac{11S}{360}\left(h\right)\)
Theo đề bài thì ta có:
\(\frac{S}{30}-\frac{1}{6}=\frac{11S}{360}\)
\(\Leftrightarrow S=60\left(km\right)\)
Thời gian dự định đi là: \(\frac{60}{30}=2\left(h\right)\)