K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Bài 1: Cho tam giác ABC. Gọi E là trung điểm của AC. Đường thẳng qua E và song song với BC cắt AB tại F. Đường thẳng qua E và song song với AB cắt BC tại D. Cm:   a) F là trung điểm của AB và D là trung điểm của BC   b) DF//AC        DF= 1/2 ACBài 2: Cho tam giác ABC có AB=AC. Tia phân giác của góc A cắt BC tại M. Cm:   a) tam giác AMB = tam giác AMC   b) M là trung điểm của cạnh BC   c) K là một điểm...
Đọc tiếp

 Bài 1: Cho tam giác ABC. Gọi E là trung điểm của AC. Đường thẳng qua E và song song với BC cắt AB tại F. Đường thẳng qua E và song song với AB cắt BC tại D. Cm:

   a) F là trung điểm của AB và D là trung điểm của BC

   b) DF//AC

        DF= 1/2 AC

Bài 2: Cho tam giác ABC có AB=AC. Tia phân giác của góc A cắt BC tại M. Cm:

   a) tam giác AMB = tam giác AMC

   b) M là trung điểm của cạnh BC

   c) K là một điểm bất kì trên đoạn thẳng AM, đường thẳng CK cắt cạnh AB tại I. Vẽ IH vuông góc với BC tại H. Góc BAH=2BIH

Bài 3: Cho tam giác vuông ABC, AC=AC. Qua A kẻ một đường thẳng d bất kì ko cắt cạnh nào của tam giác. Từ B và C kẻ BD vuông góc d, CE vuông góc d. Cm:

   a) tam giác ADB = tam giác CEA

   b) BD+CE=DE

   c) Giả sử AC = 2CE. Tính góc ECB, góc CBD

 

                                GIÚP MIK VS MIK ĐANG CẦN GẤP. CẢM ƠN CÁC BẠN TRƯỚC NHÉ!

0
9 tháng 2 2019

Ta có : \(a_1+(a_2+a_3+a_4)+...+(a_{11}+a_{12}+a_{13})+a_{14}+(a_{15}+a_{16}+a_{17})+(a_{18}+a_{19}+a_{20})< 0\)

\(a_1>0;a_2+a_3+a_4>0;....;a_{11}+a_{12}+a_{13}>0;a_{15}+a_{16}+a_{17}>0;a_{18}+a_{19}+a_{20}>0\Rightarrow a_{14}< 0\)

Cũng như vậy : \((a_1+a_2+a_3)+...+(a_{10}+a_{11}+a_{12})+(a_{13}+a_{14})+(a_{15}+a_{16}+a_{17})+(a_{18}+a_{19}+a_{20})< 0\)

\(\Rightarrow a_{13}+a_{14}< 0\)

Mặt khác : \(a_{12}+a_{13}+a_{14}>0\Rightarrow a_{12}>0\)

Từ các điều kiện \(a_1>0;a_{12}>0;a_{14}< 0\Rightarrow a_1\cdot a_{14}+a_{14}\cdot a_{12}< a_1\cdot a_{12}(đpcm)\)

P/S : Hoq chắc :>

9 tháng 2 2019

A B C E D O M N I H

Giải: Xét t/giác ABC có góc A = 900 (theo t/c t/giác vuông)

=> góc B + góc C = 900

=> 2.góc DBC + 2.góc ECB = 900

=> 2(góc DBC + góc ECB) = 900

=> góc DBC + góc ECB = 900 : 2 = 450

Xét t/giác BOC có góc OBC + góc OCB + góc BOC = 1800

=> góc BOC = 1800 - (góc OBC + góc OCB) = 1800 - 450 = 1350

b)  Xét t/giác ABD và t/giác MBD

có AB = BM (gt)

góc ABD = góc DAM (gt)

BD : chung

=> t/giác ABD = t/giác MBD (c.g.c)

=> góc A = góc DMB (hai góc tương ứng)

Mà góc A = 900 => góc DMB = 900

Xét t/giác ACE và t/giác NEC

có CN = CA (gt)

góc NCE = góc ECA (gt)

 EC : chung

=> t/giác ACE = t/giác NEC (c.g.c)

=> góc CNE = góc A (hai cạnh tương ứng)

Mà góc A = 900 => góc CNE = 900

Ta có góc CNE + góc DMB = 900 + 900 = 1800

Mà góc CNE và góc BMD ở vị trí trong cung phía

=> EN // DM 

c) Hướng dẫn Gọi giao điểm của BD và AM là H

Xét t/giác ABH và t/giác AMH 

=> t/giác ABH = t/giác AMH (c.g.c)

=> AH = MH (hai cạnh tương ứng)

=> góc AHB = góc BHM (hai góc tương ứng)

Xét t/giác AHI và t/giác MHI

=> t/giác AHI = t/giác MHI (c.g.c)

=> IA = IM (hai cạnh tương ứng) 

=> t/giác AIM là t/giác cân tại I (1) 

còn lại tự lm

9 tháng 2 2019

Bạn tham khảo ở đây nhé: https://olm.vn/hoi-dap/detail/211418926066.html

9 tháng 2 2019

Ta có : \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

\(\Rightarrow\left(x-7\right)^{x+11}-\left(x-7\right)^{x+1}=0\)

\(\Rightarrow\left(x-7\right)^{x+1}.\left[\left(x-7\right)^{x+10}-1\right]=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{x+10}=1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-7=0\\x-7=1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=7\\x=8\end{cases}}\)