Cho biểu thức:
\(M=\frac{a+1}{\sqrt{a}}+\frac{a\sqrt{a-1}}{a-\sqrt{a}}+\frac{a^2-a\sqrt{a+\sqrt{a-1}}}{\sqrt{a-a\sqrt{a}}}\)
với a > 0, a ≠ 1.
a) Chứng minh rằng M > 4.
b) Với những giá trị nào của a thì biểu thức N = 6/M nhận giá trị nguyên?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt S=1.2.3.4.5.6.7.8.9.10.11.12
\(\frac{S}{100}=3.4.5.6.7.8.9.11.12\) \(\left(1\right)\)là một số nguyên.
Hai chữ số tận cùng của S là 00
Mặt khác, trong suốt quá trình nhân liên tiếp các thừa số ở vế phải của\(\left(1\right)\),nếu chỉ để ý đến chữ số tận cùng, ta thấy S100 có chữ số tận cùng là 6(vì 3.4=12; 2.6=12; 2.7=14; 4.8=32; 2.9=18; 8.11=88; 8.12=96)
Vậy 3 chữ số tận cùng của S là 600.
d) Gọi I là trung điểm BC,AI cắt EF tại K.H là hình chiếu vuông góc của K trên BC. Chứng minh: AH luôn đi qua một điểm cố định
\(x^2+6x+1=\left(2x+1\right)\sqrt{x^2+2x+3}\)
Đặt \(\hept{\begin{cases}\sqrt{x^2+2x+3}=a\\2x+1=b\end{cases}}\)
Thì ta có:
\(a^2+2b-4=ab\)
\(\Leftrightarrow\left(2-a\right)\left(b-a-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2\\a=b-2\end{cases}}\)
Với a = 2
\(\Leftrightarrow\sqrt{x^2+2x+3}=2\)
\(\Leftrightarrow x^2+2x-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}-1\\x=-\sqrt{2}-1\end{cases}}\)
Với a = b - 2
\(\Leftrightarrow\sqrt{x^2+2x+3}=2x-1\)
Bình phương rồi giải tiếp sẽ ra.
ÁP dụng bất đẳng thức bunyakovsky:
\(P^2=\left(\sqrt{x}\sqrt{x+xy}+\sqrt{y}\sqrt{y+xy}\right)^2\le\left(x+y\right)\left(x+y+2xy\right)=1+2xy\)
Áp dụng bất đẳng thức cauchy: \(xy\le\frac{1}{4}\left(x+y\right)^2=\frac{1}{4}\)
khi đó \(P^2\le1+\frac{1}{2}=\frac{3}{2}\)
\(\Leftrightarrow P\le\sqrt{\frac{3}{2}}\)
đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)
anh chi oi giup em cau nay voi:cho x+y=4. tim gtln cua: a=(x-2)y+2017
nhờ casio và 1 số suy đoán ta biết được max f(x) =7 khi x=0 ,giờ AM-GM ngược thôi :v
ta có: \(f\left(x\right)=\sqrt{\left(2x+3\right)\left(x+3\right)}+\sqrt{4\left(x+4\right)}-2x\)
Áp dụng bất đẳng thức cauchy :
\(\sqrt{\left(2x+3\right)\left(x+3\right)}\le\frac{1}{2}\left(3x+6\right)\)
\(\sqrt{4\left(x+4\right)}\le\frac{1}{2}\left(x+8\right)\)
\(\Rightarrow f\left(x\right)\le\frac{1}{2}\left(4x+14\right)-2x=2x+7-2x=7\)
đẳng thức xảy ra khi \(\hept{\begin{cases}2x+3=x+3\\4=x+4\end{cases}\Leftrightarrow x=0}\)
Còn ý liền trước nó nữa:
Tìm tất cả các cặp số (x, y) thỏa mãn \(2\left(x\sqrt{y-4}+y\sqrt{x-4}\right)=xy\)
LÀM GIÚP MK CÂU TÌM GTLN NHA
HELP ME, PLEASE!