Cho 2 pt \(x^2+2013x+1=0\left(1\right)\) và \(x^2+2014x+1=0\left(2\right)\).Gọi x1,x2là 2 nghiệm của pt (1) ; x3;x4 là 2 nghiệm của pt (2)
Tính P=(x1+x3)(x2+x3)(x1-x4)(x3-x4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một năm xã A có số dân là : (10404 - 10000) :2 =202
Hằng năm dân số xã A tăng số % là : 202 : 10000 . 100 = 2.02 %
c. Gọi DK là đường cao của \(\Delta DPQ\)\(\left(K\in PQ\right)\)
F là giao điểm của DK với (O)\(\left(F\ne D\right)\)
Ta có: \(\widehat{OCA}=\widehat{OKA}=90^0\)
\(\Rightarrow\)Tứ giác OCAK nội tiếp.
\(\Rightarrow\widehat{COK}+\widehat{CAK}=180^0\)
Mà \(\widehat{COK}+\widehat{COF}=180^0\)
\(\Rightarrow\widehat{CAK}=\widehat{COF}\)
\(\Rightarrow\widehat{CAK}=180^0-\left(\widehat{FCO}+\widehat{CFO}\right)=180^0-2\widehat{FCO}\)(Vì \(\Delta OFC\) cân tại O (OC=OF))
Ta có: \(\widehat{FCD}=90^0\)(góc nội tiếp chắn nửa đường tròn)
\(\Rightarrow\widehat{FCO}+\widehat{OCD}=90^0\)
Lại có:\(\widehat{OCA}=\widehat{OCD}+\widehat{ACD}=90^0\)(tính chất tiếp tuyến)
\(\Rightarrow\widehat{FCO}=\widehat{ACD}\)
\(\Delta CAQ\) có: \(\widehat{CAQ}+\widehat{ACD}+\widehat{AQC}=180^0\)
\(\Rightarrow180^0-2\widehat{FCO}+\widehat{FCO}+\widehat{AQC}=180^0\)
\(\Leftrightarrow\widehat{AQC}=\widehat{FCO}=\widehat{ACQ}\)
\(\Rightarrow\Delta CAQ\)cân tại A.
Lại có: AC=AB (Tính chất tiếp tuyến)
AB=AP(\(\Delta ABP\) cân tại A)
\(\Rightarrow AP=AC=AB=AQ\)
\(\Delta CPQ\)có: \(A\in PQ;AP=AC=AQ\)
\(\Rightarrow\Delta CPQ\)vuông tại C.
=>F,C,P thẳng hàng.
=> PC là đường cao của \(\Delta DPQ\)(\(C\in DQ\))
=> F là trực tâm của \(\Delta DPQ\)
=> F trùng với H.
Mà F thuộc (O)
=> H thuộc (O)