tìm giá trị nguyên của x để biểu thức A có giá trị nguyên : A=(6x^2-9x-13)/(3x-4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, bạn làm hai cái mũ 4 ra là làm đc
2) Ta có : x4 - x3 - x + 1 = 0
<=> x3(x - 1) - (x - 1) = 0
<=> (x - 1)(x3 - 1) = 0
<=> (x - 1)(x - 1)(x2 + x + 1) = 0
<=> (x - 1)2(x2 + x + 1) = 0
<=> x - 1 = 0 (vì x2 + x + 1 > 0 với mọi x)
<=> x = 1
\(2x^2+2xy+y^2+9=6x-\left|y+3\right|\)
<=> \(x^2+2xy+y^2+x^2-6x+9=-\left|y+3\right|\)
<=> \(\left(x+y\right)^2+\left(x-3\right)^2=-\left|y+3\right|\)
Nhận thấy , VP lớn hớn hoặc bằng 0 với mọi x,y
Mặt khác , VT lại bé hơn hoặc bằng 0
=> \(\hept{\begin{cases}x+y=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}y=-3\\x=3\end{cases}}\)
Vì \(a,b,c\ge0\)Nên ta nhân a+b+c vào hai vế của bất đẳng thức :
Ta được:\(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\ge9\)
\(\Leftrightarrow\frac{a}{a}+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+\frac{b}{b}+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+\frac{c}{c}\ge9\)
\(\Leftrightarrow3+\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)-9\ge0\)(2)
Lại có \(ab\ge0\)
\(\Rightarrow\frac{\left(a-b\right)^2}{ab}\ge0\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2\)
Tương tự:\(\frac{c}{a}+\frac{a}{c}\ge2;\frac{b}{c}+\frac{c}{b}\ge2\)(1)
Từ (1),(2),(3) \(\Rightarrow3+2+2+2-9\ge0\)(luôn đúng)
Vậy..........................................................................................
Dấu "=" <=> a=b=c
Nếu như tớ làm đúng thì bạn k cho tớ với nhé!!!!!!!!!!!!!!!!!!
Thanks bạn trước!
Áp dụng bất đẳng thức Cauchy - Schwarz dạng engel , ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)
Đẳng thức xảy ra <=> a = b = c
Hình dễ vẽ; bạn tự vẽ nhé!
a) Xét tam giác HBA và tam giác ABC; ta có:
\(\widehat{AHB}=\widehat{BAC}=90^0\)
\(\widehat{B}\)- chung
\(\Rightarrow\)tam giác HBA đồng dạng tam giác ABC (g-g)
b) Xét tam giác ABH và tam giác ADH có:
\(\widehat{AHB}=\widehat{AHD}=90^0\)
\(AH\)- cạnh chung
\(BH=HD\)(GT)
\(\Rightarrow\)Tan giác ABD = tam giác ADH (c-g-c)
\(\Rightarrow\)AB = AD (2 cạnh tương ứng)
Vì tam giác HBA đồng dạng với tam giác ABC
\(\Rightarrow\frac{HB}{AB}=\frac{AB}{BC}\Rightarrow HB.BC=AB.AB=AB.AD\)(Vì AB = AD theo chứng minh trên)
Vậy AB.AD=BH.BC (ĐPCM)