Tìm tất cả các số nguyên x:y (x<y), biết\(2008^2+x^2=2007^2+y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy ta có:
\(a+1\ge2\sqrt{a.1}=2\sqrt{a}\)
\(b+1\ge2\sqrt{b.1}=2\sqrt{b}\)
\(c+1\ge2\sqrt{c.1}=2\sqrt{c}\)
Dấu "=" xảy ra <=> \(a=b=c=1\)
\(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\) \(\ge\)\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8.\sqrt{abc}=8\)
Vậy Min P = 8 <=> a = b = c = 1
Cauchy :
\(P=\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}=8.\sqrt{abc}=8\)
Đẳng thức xảy ra <=> a = b = c = 1
Không mất tính tổng quát,
Giả sử a<b
Ta có: ab=bc => c<b
Ta có: bc=cd => c<d
Ta có: cd=de => e<d
Ta có: de=ea => a>e
Ta có: ea=ab => a>b ( trái với giả sử)
Vậy a=b=c=d=e
=> ba=bc=cd=de=ea
e<a
\(a^4+a^3+a+1\)
\(=\left(a^4+a^3\right)+\left(a+1\right)\)
\(=a^3\left(a+1\right)+\left(a+1\right)\)
\(=\left(a+1\right)\left(a^3+1\right)\)
\(=\left(a+1\right)^2\left(a^2-a+1\right)\)
\(=\left(a+1\right)^2\left[\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\right]\) \(\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=-1\)
\(a^4+a^3+a+1=\left(a+1\right)\left(a^3+1\right)=\left(a+1\right)^2\left(a^2-a+1\right)=\left(a+1\right)^2\left(\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\right)\)
ta có : \(\left(a+1\right)^2\ge0\forall a\);\(\left(\left(a-\frac{1}{2}\right)^2+\frac{1}{4}\right)>0\forall a\)
Do : Góc ABD = Góc ACE (= 90 - A )
=> ABD ACE (2 vuông)
=> AD.AC = AE.AB (tỉ lệ đồng dạng)
<=> AM^2 = AN^2 (Hệ thức lượng trong vuông)
<=> AM = AN
Hay AMN cân tại A.
pt <=> \(\left(x-y\right)\left(x+y\right)=\left(2007-2008\right)\left(2007+2008\right)\)
<=> \(\left(x-y\right)\left(x+y\right)=\left(-1\right).4015\)
Do x < y => x - y < 0
Vậy \(\hept{\begin{cases}x-y=-1\\x+y=4015\end{cases}\Leftrightarrow\hept{\begin{cases}x=2007\\y=2008\end{cases}}}\)