K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2019

                       Giải

Gọi độ dài ba cạnh của tam giác là x , y , z (cm) ( x , y , z > 0 )

Ta có: S =12 .12x = 12 .15y = 12 .20z

⇔ 12x = 15y = 20z

\(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{15}}=\frac{z}{\frac{1}{20}}\)  

ÁP DỤNG TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU TA CÓ:

\(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{15}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{12}+\frac{1}{15}+\frac{1}{20}}=\frac{60}{\frac{1}{5}}=60.5=300\)

\(\Leftrightarrow\hept{\begin{cases}x=300.\frac{1}{12}=25\\y=300.\frac{1}{15}=20\\z=300.\frac{1}{10}=15\end{cases}}\)

Vậy mỗi cạnh là 25 , 20 , 15

Gọi độ dài ba cạnh của tam giác là a, b, c
Độ dài các cạnh của tam giác tỉ lệ nghịch với chiều cao : 
12a=15b=20c và a+b+c=60
a/1/12=b/1/15=c/1/20 va a+b+c=60
Ap dung tinh chat day ti so bang nhau : 
a/1/12=b/1/15=c/1/20=a+b+c/1/12+1/15+1/20=60/1/5=300
Suy ra :a/1/12=300=>a=300.1/12=25
b/1/15=300=>b=300.1/15=20
c/1/20=300=>c=300.1/20=15
Vậy độ dài ba cạnh của tam giác là 25cm, 20cm, 15cm

20 tháng 2 2019

Giải: Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a + b + c + d\(\ne\)0)

=> \(\frac{a}{b}=1\)=> a = b

    \(\frac{b}{c}=1\) => b = c      

  \(\frac{c}{d}=1\) => c = d                              

\(\frac{d}{a}=1\) => d = a

=> a = b = c = d

Khi đó, ta có: \(\frac{2a-b}{c+d}+\frac{2b-c}{a+d}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}\)

hay \(\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)

\(=\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}+\frac{a}{2a}\)

\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\)

\(\frac{1}{2}.4=2\)

20 tháng 2 2019

                Lời giải

Ta có: \(M=\frac{zx+by}{cx+dy}=\frac{zx}{cx}=\frac{by}{dy}\) (tính chất tỉ dãy số bằng nhau)

Rút gọn đi,ta được: \(\frac{z}{c}=\frac{b}{d}\) là một tỉ lệ thức (đpcm) 

20 tháng 2 2019

Nhớ xét x,y khác 0 giùm con:v

20 tháng 2 2019

Thay x = -1/3 vào biểu thức A,ta có :

\(\left(-\frac{1}{3}\right)^3-5.\left(-\frac{1}{3}\right)^2+10\)

\(=\left(-\frac{1}{27}\right)-5.\frac{1}{9}+10\)

\(=\left(-\frac{1}{27}\right)-\frac{5}{9}+10\)

\(-\frac{16}{27}+10=\frac{286}{27}\)

Vậy ...

20 tháng 2 2019

Thay x = -0,5 vào biểu thức B ,ta có :

\(-0,5^3-4\left(-0,5\right)^2-7.\left(-0,5\right)-10\)

\(=-0,125-4.\left(-0,25\right)-3,7-10\)

\(=-0,125-\left(-1\right)-3,7-10\)

\(=\text{0.875-2,7-10}\)

\(=\text{-12.825}\)

20 tháng 2 2019

a) \(\left[-\frac{1}{2}\left(a-1\right)x^3y^4z^2\right]^5=\frac{-\left(a-1\right)^5}{32}x^{15}y^{20}z^{10}\)
Hệ số: \(\frac{-\left(a-1\right)^5}{32}\). Bậc của đơn thức: \(15+20+10=45\)
b) \(\left(a^5b^2xy^2z^{n-1}\right)\left(-b^3cx^4z^{7-n}\right)=-a^5b^5cx^5y^2z^6\)

Hệ số: \(-a^5b^5c\). Bậc của đơn thức: \(5+2+6=13\)
c) \(\left(-\frac{9}{10}a^3x^2y\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=\left(-\frac{9}{10}a^3x^2y\right)\left(-\frac{125}{27}a^3x^{15}y^6z^3\right)\)\(=\frac{25}{6}a^6x^{17}y^7z^3\)

Hệ số: \(\frac{25}{6}a^6\). Bậc của đơn thức:\(17+7+3=27\)

20 tháng 2 2019

xét tam giác AOB và tam giác AOC có:

              AO chung

              \(\widehat{AOB}\)=\(\widehat{AOC}\)(gt)

\(\Rightarrow\)tam giác AOB=tam giác AOC(CH-GN)

\(\Rightarrow\)AB=AC đpcm

19 tháng 2 2019

a)\(|x-5|\le2\Leftrightarrow\orbr{\begin{cases}x-5\le2\\x-5\ge2\end{cases}\Leftrightarrow\orbr{\begin{cases}x\le7\\x\ge3\end{cases}}}\)

b)\(\left(x^2-20\right)\left(x^2-15\right)\left(x^2-10\right)\left(x^2-5\right)< 0\Leftrightarrow\left(x^4-25x^2+100\right)\left(x^4-25x^2+150\right)< 0\\\)

bạn lm như thường nha

mk lười nhập quá

24 tháng 2 2019

Một cách giải khác:

A B C D E H I F

Dựng tam giác đều EHF sao cho F nằm trên nửa mặt phẳng bờ BC có chứa A.

Khi đó:  ^CEH = ^AEF (=600 - ^AEH). Kết hợp với EC=EA, EH=EF suy ra \(\Delta\)HEC = \(\Delta\)FEA (c.g.c)

=> CH = AF (2 cạnh tương ứng) hay BH = AF (Do BH=CH)

Ta có: ^IAF = 3600 - ^EAF - ^EAC - ^BAC - IAB = 3600 - 600 - 300 - ^ECH - ^BAC (^EAF=^ECH vì \(\Delta\)HEC = \(\Delta\)FEA)

= 2700 - 600 - ^BAC - ^ACB = 300 + ^ABC = ^IBA + ^ABC = ^IBH

Xét \(\Delta\)BIH và \(\Delta\)AIF có: IB = IA, BH = AF (cmt), ^IBH = ^IAF (cmt) => \(\Delta\)BIH = \(\Delta\)AIF (c.g.c)

Suy ra IH = IF (2 cạnh tương ứng). Mà EH = EF nên IE trung trực của HF.

Xét \(\Delta\)EHF đều có EI là trung trực của HF => EI là phân giác của ^HEF => ^IEH = ^HEF/2 = 300

Kết luận: ^IEH = 300.

20 tháng 2 2019

A B C K E D 1 2 3 1 1 2 2 1 2 3 4 I H

Trên tia IH lấy điểm K sao cho HI=HK

Xét tam giác HIB và tam giác HKC có:

HI=HK (cách vẽ)

HB=HC ( H là trung điểm BC)

\(\widehat{H_1}=\widehat{H_2}\)( đối định )

=> \(\Delta HIB=\Delta HKC\)(c.g.c)

=> IB=CK mà IB=AI ( dễ tự chứng minh)

=> CK=AI (1)

\(\widehat{IAE}=\widehat{A_1}+\widehat{A_2}+\widehat{A_3}=30^o+\widehat{A_2}+60^o=90^o+\widehat{A_2}\)

\(\widehat{ECK}=\widehat{C_1}=360^o-\left(\widehat{C_2}+\widehat{C_3}+\widehat{C_4}\right)\)Vì \(\Delta HIB=\Delta HKC\)=> \(\widehat{C_2}=\widehat{HBI}\)=\(\widehat{B_1}+\widehat{B_2}=30^o+\widehat{B_1}\)

và \(\widehat{C_4}=60^o\)

=> \(\widehat{ECK}=\widehat{C_1}=360^o-\left(90^o+\widehat{B_1}+\widehat{C_3}_{ }\right)=90^o+\widehat{A_2}\)

=> \(\widehat{IAE}=\widehat{ECK}\)(2)

và AE= EC ( tam giác AEC đều) (3)

Từ (1), (2), (3)

=> \(\Delta IAE=\Delta KCE\)

=> IE=KE => tam giác IEK cân  có EH là đường trung tuyến=> EH cũng là đường phân giác 

\(\widehat{AEI}=\widehat{CEK}\)=> \(\widehat{IEK}=\widehat{IEC}+\widehat{CEK}=\widehat{IEC}+\widehat{AEI}=\widehat{AEC}=60^o\)

=> \(\widehat{IEH}=60^o:2=30^o\)