tìm số tự nhiên (x,y) biết \(^{60^x}\) +48=\(y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ \(MI\perp BH\left(I\in BH\right)\)
Mà \(BH\perp AC\left(gt\right)\Rightarrow MI//AC\Rightarrow\widehat{IMB}=\widehat{C}\) (đồng vị)
\(\Delta ABC\) cân tại A (gt) \(\Rightarrow\widehat{ABC}=\widehat{C}\Rightarrow\widehat{DBM}=\widehat{C}\)
\(\Delta DBM=\Delta IMB\left(ch-gn\right)\Rightarrow DM=IB\) (2 cạnh tương ứng) (1)
Nối M với H
C/m được \(\Delta IHM=\Delta EMH\left(ch-gn\right)\Rightarrow IH=EM\) (2)
Từ (1) và (2) \(\Rightarrow MD+ME=IB+IH=BH\)
\(MH\perp AB\left(gt\right)\Rightarrow\widehat{MHA}=\widehat{MHB}=90^0\)
\(MK\perp AC\left(gt\right)\Rightarrow\widehat{MKA}=\widehat{MKC}=90^0\)
M là trung điểm của BC (gt) nên MB = MC
AM là tia phân giác của góc A (gt) \(\Rightarrow\widehat{BAM}=\widehat{CAM}\Rightarrow\widehat{HAM}=\widehat{KAM}\)
\(\Delta AHM=\Delta AKM\left(ch-gn\right)\Rightarrow HM=KM\) (2 cạnh tương ứng)
\(\Delta HMB=\Delta KMC\left(ch-cgv\right)\Rightarrow\widehat{B}=\widehat{C}\) ( 2 góc t/ứ)
Bài làm
a) Vì tam giác ABC cân tại A
=> Góc ABC = góc ACB ( 2 góc ở đáy )
Xét tam giác ABC ta có:
A + ABC + ACB = 180o ( Định lí tổng ba góc trong tam giác )
hay ABC + ACB = 180o - A
=> 2ABC = 180o - A ( 1 )
Ta có: AB + BD = AD
AC + CE = AE
Mà AB = AC ( giả thiết )
BD = CE ( giả thiết )
=> AD = AE
=> Tam giác ADE cân tại A
=> Góc D = góc E
Xét tam giác ADE
Ta có: A + D + E = 180o
hay D + E = 180o - A
=> 2D = 180o - A ( 2 )
Từ ( 1 ) và( 2 ) => 2D = 2ABC
=> D = ABC
Mà góc D và góc ABC ở vị trí đồng vị
=> DE // BC ( đpcm )
b) Ta có: B1 = B2 ( 2 góc đối đỉnh )
C1 = C2 ( 2 góc đối đỉnh )
Mà B1 = C1 ( tam giác ABC cân tại A )
=> B2 = C2
Xét tam giác MBD và tam giác NCE
có: Góc BMD = góc CNE = 90o
cạnh huyền: BD = CE ( giả thiết )
Góc nhọn: B2 = C2 ( chứng minh trên )
=> Tam gíc MBD = tam giác NCE ( cạnh huyền - Góc nhọn )
=> MB = NC. ( 2 cạnh tương ứng )
Ta có: MB + BC = MC
NC + BC = NB
Mà MB = NC ( chứng minh trên )
Cạnh BC chung
=> MC = NB
Xét tam giác ACM và tam giác ABN
Có: AB = AC ( giả thiết )
B1 = C1 ( Tam giác ABC cân tại A )
MC = NB ( chứng minh trên )
=> Tam giác ACM = tam giác ABN ( c.g.c )
=> AM = AN ( 2 cạnh tương ứng )
=> Tam giác AMN cân tại A ( đpcm )
~ Còn câu c. mỏi tay quá, đợi mik tị, mik làm nốt cho, toán hình là sở trường của mik. ~
a) Vì AB=AC mà BD=CE
Suy ra : AB+BD=AC+CE
Suy ra AD= AE
Suy ra tam giác DAE cân tại A
Suy ra \(\widehat{\widehat{ADE}=_{ }\frac{180^0-\widehat{BAC}}{2}\left(1\right)}\)
Ta có tam giác ABC cân tại A
suy ra \(\widehat{\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\left(2\right)}\)
Từ (!) và (2) suy ra \(\widehat{ADE=\widehat{ABC}}\)
mà hai góc ở vị trí đồng vị . Suy ra \(DE//BC\)
Với \(x>0\Rightarrow60^x=6^x\cdot10^x\)tận cùng bằng 0, do đó \(60^x+48\)tận cùng bằng 8. Điều này vô lí vì \(60^x+48=y^2\)là SCP nên không thể tận cùng bằng 2,3,7,8.
Với \(x=0\), ta có \(y^2=49\Leftrightarrow y=7\)(y là STN nên y>0)
Vậy \(x=0;y=7\)