Cho x + 4y = 1 . CMR : x2 + 4y2 > 0,2 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2\right)\Rightarrow y=2x-m-5.\)
\(\left(1\right)\Rightarrow\left(m-1\right)x-m\left(2x-m-5\right)=3m-1.\)
\(\left(m+1\right)x=m^2+2m+1.\)
Để HPT có nghiệm duy nhất => m +1 \(\ne\)0 hay m \(\ne\)-1
=>\(x=m+1>0\Rightarrow m>-1\)
=> y =2( m+1) -m -5 =m -3 > 0 => m> 3
Suy ra số nguyên m > 3 thỏa mãn
+x<1 => y = -2x +4
+ 1 </ x </ 3 => y= 2
+ x> 3 => y= 2x -4
bạn tự vẽ hình nhé
a)ΔABCđều (gt) nên AB = BC = AC ; góc A = góc B = góc C = 60 0 mà AD = BE = CF (gt)
=> AB - AD = BC - BE = AC - CF <=> BD = CE = AF
ΔADF,ΔBEDcó AD = BE (gt) ; góc DAF = góc EBD = 60 0 (cmt) ; AF = BD (cmt)
nên ΔADF = ΔBED c.g.c
=> DF = ED (2 cạnh tương ứng) (1)
ΔADF,ΔCFEcó AD = CF (gt) ; góc DAF = góc FCE = 60 0 (cmt) ; AF = CE (cmt)
nên ΔADF = ΔCFE c.g.c
=> DF = FE (2 cạnh tương ứng) (2).Từ (1) và (2),ta có DF = FE = ED.
VậyΔDEFđều
b) không biết làm
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Đặt:
\(P=\frac{x^2+1}{x^2-x+1}\)
\(\Leftrightarrow\left(P-1\right)x^2-x+P-1=0\)
Để PT theo nghiệm x có nghiệm thì
\(\Delta=1^2-4\left(P-1\right)\left(P-1\right)\ge0\)
\(\Leftrightarrow4P^2-8P+3\le0\)
\(\Leftrightarrow\frac{1}{2}\le P\le\frac{3}{2}\)
Vậy....
Đề phải là CMR: \(x^2+4y^2\ge0,2\) nha bạn.
Giải:
Áp dụng BĐT Bunhiacopxki: \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
(Dấu "=" xảy ra \(\Leftrightarrow\frac{x}{a}=\frac{y}{b}\))
Áp dụng vào bài toán ta có:
\(\left(x+4y\right)^2=\left(1.x+2.2y\right)^2\le\left(1^2+2^2\right)\left(x^2+4y^2\right)=5\left(x^2+4y^2\right)\)
Mà \(x+4y=1\) nên \(x^2+4y^2\ge\frac{1}{5}=0,2\) (Đpcm)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{x}{1}=\frac{2y}{2}=y\\x+4y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{5}\)
Áp dụng Bunhia...
\(\left(1.x+2.2y\right)^2\le\left(1^2+2^2\right)\left(x^2+4y^2\right).\)
\(1\le5.\left(x^2+4y^2\right).\Leftrightarrow x^2+4y^2\ge\frac{1}{5}=0,2\)