K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

Đề phải là CMR: \(x^2+4y^2\ge0,2\) nha bạn.

Giải:

Áp dụng BĐT Bunhiacopxki: \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

(Dấu "=" xảy ra \(\Leftrightarrow\frac{x}{a}=\frac{y}{b}\))

Áp dụng vào bài toán ta có:

\(\left(x+4y\right)^2=\left(1.x+2.2y\right)^2\le\left(1^2+2^2\right)\left(x^2+4y^2\right)=5\left(x^2+4y^2\right)\)

Mà \(x+4y=1\) nên \(x^2+4y^2\ge\frac{1}{5}=0,2\) (Đpcm)

Dấu "=" xảy ra  \(\Leftrightarrow\hept{\begin{cases}\frac{x}{1}=\frac{2y}{2}=y\\x+4y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{5}\)

18 tháng 5 2017

Áp dụng Bunhia...

\(\left(1.x+2.2y\right)^2\le\left(1^2+2^2\right)\left(x^2+4y^2\right).\)

\(1\le5.\left(x^2+4y^2\right).\Leftrightarrow x^2+4y^2\ge\frac{1}{5}=0,2\)

18 tháng 5 2017

đề phải là 1x+2/y+3/z chứ nhỉ

18 tháng 5 2017

\(\left(2\right)\Rightarrow y=2x-m-5.\)

\(\left(1\right)\Rightarrow\left(m-1\right)x-m\left(2x-m-5\right)=3m-1.\)

\(\left(m+1\right)x=m^2+2m+1.\)

Để HPT có nghiệm duy nhất => m +1 \(\ne\)0 hay m \(\ne\)-1

=>\(x=m+1>0\Rightarrow m>-1\)

=> y =2( m+1) -m -5 =m -3 > 0 => m> 3

Suy ra số nguyên m > 3 thỏa mãn 

18 tháng 5 2017

+x<1 => y = -2x +4 

+ 1 </ x </ 3 => y= 2 

+ x> 3 => y= 2x -4

18 tháng 5 2017

xl e k có bt

18 tháng 5 2017

sorry , em ko biết làm đâu , em mới học lớp 5 thui

18 tháng 5 2017

Con kiến nói: " Em có thai với anh rồi ! "

18 tháng 5 2017

Con kiến nói : em có thai với anh rồi

18 tháng 5 2017

bạn tự vẽ hình nhé

a)ΔABCđều (gt) nên AB = BC = AC ; góc A = góc B = góc C = 60 0 mà AD = BE = CF (gt)

=> AB - AD = BC - BE = AC - CF <=> BD = CE = AF

ΔADF,ΔBEDcó AD = BE (gt) ; góc DAF = góc EBD = 60 0 (cmt) ; AF = BD (cmt)

nên ΔADF = ΔBED c.g.c

=> DF = ED (2 cạnh tương ứng) (1)

ΔADF,ΔCFEcó AD = CF (gt) ; góc DAF = góc FCE = 60 0 (cmt) ; AF = CE (cmt)

nên ΔADF = ΔCFE c.g.c

=> DF = FE (2 cạnh tương ứng) (2).Từ (1) và (2),ta có DF = FE = ED.

VậyΔDEFđều 

b) không biết làm

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

18 tháng 5 2017

Đặt:

\(P=\frac{x^2+1}{x^2-x+1}\)

\(\Leftrightarrow\left(P-1\right)x^2-x+P-1=0\)

Để PT theo nghiệm x có nghiệm thì

\(\Delta=1^2-4\left(P-1\right)\left(P-1\right)\ge0\)

\(\Leftrightarrow4P^2-8P+3\le0\)

\(\Leftrightarrow\frac{1}{2}\le P\le\frac{3}{2}\)

Vậy....