Cho tứ giác ABCD nội tiếp đường tròn (O; R) (AB < CD). Gọi P là điểm chính giữa của cung nhỏ AB; DP cắt AB tại E và cắt CB tại K; CP cắt AB tại F và cắt DA tại I.
a. Chứng minh: Tứ giác CKID nội tiếp được và IK // AB.
b. Chứng minh: AP2 = PE .PD = PF . PC
c. Chứng minh: AP là tiếp tuyến của đường tròn ngoại tiếp tam giác AED.
d. Gọi R1, R2 là các bán kính đường tròn ngoại tiếp các tam giác AED và BED.
Chứng minh:
R1+R2=\(\sqrt{4R^2-PA^2}\)
uk. nhưng đây là đề thi thử vào 10 hà nội nắm 2015 -16 mà
đè đó tui lm r đó,,,,nhưng bây h chắc quên r