vẽ đồ thị hàm số y=/x/+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x = 1 => y = 2, ta được M(1 ; 2)
Cho y = 1 => x = 1/2, ta được N(1/2 ; 1)
Đường thẳng MN là đồ thị hàm số y = 2x.
y x M N
A = \(\frac{8\sqrt{41}}{2\sqrt{2^2+2.2.\sqrt{41}+\sqrt{41}^2}}\)
A = \(\frac{8\sqrt{41}}{2\sqrt{\left(2+\sqrt{41}\right)^2}}\)
A = \(\frac{8\sqrt{41}}{2\left|2+\sqrt{41}\right|}\)
A = \(\frac{8\sqrt{41}}{4+2\sqrt{41}}\)
B = \(\left(\frac{2x+1}{\sqrt{x}^3+1^3}-\frac{1}{\sqrt{x}-1}\right):\frac{x+\sqrt{x}+1+x+4}{x+\sqrt{x}+1}\)
B = \(\left(\frac{2x+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}-1}\right).\frac{x+\sqrt{x}+1}{2x+\sqrt{x}+5}\)
Bạn tự làm tiếp nhé, mỏi tay quá!!
\(A=\frac{8\sqrt{41}}{2\sqrt{45+4\sqrt{41}}}=\frac{8\sqrt{41}}{2\sqrt{41+4\sqrt{41}+4}}=\frac{8\sqrt{41}}{2\sqrt{\left(\sqrt{41}\right)^2+2\cdot\sqrt{41}\cdot2+2^2}}\)
\(=\frac{8\sqrt{41}}{2\sqrt{\left(\sqrt{41}+2\right)^2}}=\frac{8\sqrt{41}}{2\left(\sqrt{41}+2\right)}=\frac{8\sqrt{41}\left(\sqrt{41}-2\right)}{2\left(41-4\right)}=\frac{328-16\sqrt{41}}{74}=\frac{164-8\sqrt{41}}{37}\)
\(B=\left(\frac{2x+1}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right):\left(1-\frac{x+4}{x+\sqrt{x}+1}\right)\)
\(=\left(\frac{2x+1}{\sqrt{x}^3+1^3}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{x+\sqrt{x}+1-x-4}{x+\sqrt{x}+1}\right)\)
\(=\left(\frac{2x+1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}-3}{x+\sqrt{x}+1}\right)\)
\(=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{x+\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}}{\sqrt{x}-3}=\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}=\frac{x+3\sqrt{x}}{x-9}\)
A)\(x^3-3x^2+3x+1=0\)
\(\Leftrightarrow x^3-3x^2+3x-1+2=0\)
\(\Leftrightarrow\left(x-1\right)^3+2=0\)
\(\Leftrightarrow\left(x-1\right)^3=-2\)
\(\Leftrightarrow x=1-\sqrt[3]{2}\)
Mình chỉ làm được câu 1 thôi! Mong bạn thông cảm :D
Ta chứng minh bài toán \(a_1\le a_2\le...\le a_n\) thỏa mãn \(a_1+a_2+...+a_n=0;\left|a_1\right|+\left|a_2\right|+...+\left|a_n\right|=1\) thì \(a_n-a_1=\frac{2}{n}\)
Từ điều kiện trên ta có \(k\in N\) sao cho \(a_1\le a_2\le...a_k\le0\le a_{k+1}\le...\le a_n\)
\(\Rightarrow\hept{\begin{cases}\left(a_1+a_2+...+a_k\right)+\left(a_{k+1}+...+a_n\right)=0\\-\left(a_1+a_2+...+a_k\right)+\left(a_{k+1}+...+a_n\right)=\frac{1}{2}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a_1+a_2+...+a_k=-\frac{1}{2}\\a_{k+1}+...+a_n=\frac{1}{2}\end{cases}}\). Mà
\(a_1\le a_2\le...\le a_k\Rightarrow a_1\le-\frac{1}{2k};a_{k+1}\le...\le a_n\Rightarrow a_n\ge\frac{1}{2k}\)
\(\Rightarrow a_n-a_1\ge\frac{1}{2k}+\frac{1}{2\left(n-k\right)}=\frac{n}{2k\left(n-k\right)}\ge\frac{n}{2\left(\frac{k+n-k}{2}\right)^2}=\frac{2}{n}\)
Áp dụng vào bài chính theo giải thiết ta có:
\(\hept{\begin{cases}\frac{x_1}{2013}+\frac{x_2}{2013}+...+\frac{x_{192}}{2013}=0\\\left|\frac{x_1}{2013}\right|+\left|\frac{x_2}{2013}\right|+...+\left|\frac{x_{192}}{2013}\right|=0\end{cases}}\)
\(\Rightarrow\frac{x_{192}}{2013}-\frac{x_1}{2013}\ge\frac{2}{192}\Rightarrow x_{192}-x_1\ge\frac{2013}{96}\)
Nếu x=0, y =1, -1
-Nếu x khác 0,
- Nếu x lẻ, cộng 2 vế với 1
x^3 + x^2 + x + 1 = 4y^2 + 4y + 1
<=> (x^2 + 1)(x + 1) = (2y + 1)^2
x lẻ
x^2 + 1 chẵn
x + 1 chẵn
=> VT chẵn mà VP luôn lẻ => loại TH x lẻ
Xét x chẵn =>....tui thấy trên mạng nó lm tek này,,nhưng mà TH chẵn nó lm sai,,,
Vậy pt có 2 cặp nghiệm nguyên (0,1) và (0,-1)
Có 2 TH xảy ra:
* Nếu x \(\ge\)0 => y = x + 2 (rồi vẽ như lúc nãy).
* Nếu x < 0 => y = -x + 2 (dựa vào bài lúc nãy để làm).