K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

A C B O M K 60 1 1 2 1

a) Ta có : \(\widehat{O_1}=2\widehat{C}=120^0\) (góc ở tâm gấp đôi góc nội tiếp cùng chắn cung nhỏ AB) nên độ dài cung nhỏ AB là \(\frac{2R\pi.120}{360}=\frac{2}{3}R\pi\)

b) \(\Delta AMC\)cân tại M (MC = MA) có \(\widehat{C}=60^0\)nên \(\Delta AMC\)đều\(\Rightarrow\widehat{AMC}=60^0\Rightarrow\widehat{M_1}=120^0\)

\(\Delta AOK,\Delta BMK\)có \(\widehat{K_1}=\widehat{K_2}\)(đối đỉnh) ; \(\widehat{O_1}=\widehat{M_1}=120^0\Rightarrow\Delta AOK\infty\Delta BMK\left(g-g\right)\)

\(\Rightarrow\frac{AO}{OK}=\frac{BM}{MK}\Rightarrow MK.AO=OK.MB\)

c) Tứ giác ABMO có \(\widehat{O_1}=\widehat{M_1}\)(2 đỉnh kề nhau A,M nhìn xuống cạnh đối diện dưới AB các góc bằng nhau)

=> Tứ giác ABMO nội tiếp hay B,M,O,A cùng thuộc 1 đường tròn

1 tháng 11 2020

XCFKLVZG

1 tháng 11 2020

Hiển nhiên quá nhỉ

\(x_1;x_2\)là hai nghiệm của phương trình suy ra \(\hept{\begin{cases}x_1^2-3x_1+1=0\\x_2^2-3x_2+1=0\end{cases}\Rightarrow}\hept{\begin{cases}x_1^2=3x_1-1\\x_2^2=3x_2-1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x_1^{n+2}=3x_1^{n+1}-x_1^n\\x_2^{n+2}=3x_2^{n+1}-x_2^n\end{cases}}\)

Cộng theo từng vế của hai phương trình trên ta được: \(A_{n+2}=3A_{n+1}-A_n\)(Đpcm) 

24 tháng 5 2017

\(x^4+5x^2-36=0\)

\(\Leftrightarrow x^4-4x^2+9x^2-36=0\)

\(\Leftrightarrow x^2\left(x^2-4\right)+9\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2+9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+9\right)=0\)

Dễ thấy: \(x^2+9\ge9>0\forall x\) (vô nghiệm)

SUy ra \(x-2=0;x+2=0\Rightarrow x=2;x=-2\)

24 tháng 5 2017

Đặt t = x2 ( t ≥ 0)

ta có phương trình: t2 + 5t – 36 = 0. Δt = 25 4.1.(-36) = 169

→ t1 = 4 (tmđk); t2 = -9 (loại). Với t = 4 → x2 = 4 → x = 2

24 tháng 5 2017

\(\Delta=\left(3m-1\right)^2-4\left(2m^2-m\right)=m^2-2m+1=\left(m-1\right)^2\)

Để pt có 2 nghiệm pb <=> delta >0 <=> m khác 1

Theo hệ thức vi ét ta có:

\(\hept{\begin{cases}x_1+x_2=3m-1\\x_1.x_2=2m^2-m\end{cases}}\)

Vì |x1+x2|=2

\(\Rightarrow x_1^2+x_2^2-2x_1.x_2=4\Rightarrow\left(x_1+x_2\right)^2-4x_1.x_2=4\)

\(\Rightarrow\left(3m-1\right)^2-4\left(2m^2-m\right)=4\Rightarrow\left(m-1\right)^2=4\Rightarrow\orbr{\begin{cases}m=3\\m=-1\left(L\right)\end{cases}}\)

Vậy m=3 thì thỏa mãn

24 tháng 5 2017

Theo vi-ét ta được: \(\hept{\begin{cases}x_1+x_2=\frac{3m-1}{1}=3m-1\\x_1x_2=\frac{2m^2-m}{1}=2m^2-m\end{cases}}\)(1)

Theo đề: \(\left|x_1-x_2\right|=2\Leftrightarrow\left(x_1-x_2\right)^2=4\Leftrightarrow x_1^2+x_2^2-2x_1x_2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)(2)

Thay (1) vào (2) ta được pt:

\(\left(3m-1\right)^2-4.\left(2m^2-m\right)=4\)

\(\Rightarrow9m^2-6m+1-8m^2+4m-4=0\)

\(\Rightarrow m^2-2m-3=0\)

\(\Rightarrow\left(m-3\right)\left(m+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}m=3\\m=-1\end{cases}}\)

Với m = 3 suy ra hệ \(\hept{\begin{cases}x_1+x_2=8\\x_1x_2=15\end{cases}}\). Giải hệ ta được \(\hept{\begin{cases}x_1=5\\x_2=3\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=3\\x_2=5\end{cases}}\)

Với m = -1 suy ra hệ \(\hept{\begin{cases}x_1+x_2=-4\\x_1x_2=3\end{cases}}\). Giải hệ ta được \(\hept{\begin{cases}x_1=-1\\x_2=-3\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=-3\\x_2=-1\end{cases}}\)

                                       Vậy (x1;x2) = (5;3) , (3;5) , (-1;-3) , (-3;-1)

29 tháng 5 2017

\(cos2\left(x+\frac{\pi}{6}\right)+4cos\left(\frac{\pi}{3}-x\right)=\frac{5}{2}\)

\(4sin\left(x+\frac{\pi}{6}\right)+\left(x+\frac{\pi}{6}\right)cos2=\frac{5}{2}\)

\(\frac{1}{6}\left(24sin\right)\left(x+\frac{\pi}{6}\right)+6x\left(cos2\right)=\frac{5}{2}\)

\(2\sqrt{3}sin\left(x\right)+x\)\(cos\left(2\right)+2cos\left(x\right)+\frac{1}{6}\pi\)\(cos\left(2\right)=\frac{5}{2}\)

\(\left(2\sqrt[6]{-1}-2\left(-1^{\frac{5}{6}}\right)\right)sin\left(x\right)+x\left(cos2\right)+\left(2\sqrt[3]{-1-2\left(-1^{\frac{2}{3}}\right)}\right)cos\left(x\right)=\frac{5}{2}-\frac{1}{6}\pi\)\(cos\left(2\right)\)

\(24sin\left(x+\frac{\pi}{6}\right)+\left(6x+\pi\right)cos\left(2\right)=15\)

\(4sin\left(x+\frac{\pi}{6}\right)+x\)\(cos\left(2\right)+\frac{1}{6}\pi\)\(cos\left(2\right)=\frac{5}{2}\)

\(\Rightarrow x=\left\{-15,1252;-13,976;-6,8388;-3,93832\right\}\)

24 tháng 5 2017

Để PT có 2 nghiệm phân biệt:

\(\Delta'=m^2-2\left(m^2-2\right)>0\)

\(< =>4>m^2< =>-2< m< 2\left(1\right)\)

Theo Vi-ét

\(x_1+x_2=-m,x_1x_2=\frac{m^2-2}{2}\)

\(=>A=2x_1x_2+x_1+x_2-4=m^2-2-m-4=m^2-m-6< =4-\left(-2\right)-6=0\)

\(=>\)Max \(A=0\)

Dấu "=" xảy ra khi m=-2

25 tháng 5 2017

Mình xin làm lại 

  Giải

Thời gian của hai công nhân đó là

         3 + 2 \(=\)5 giờ

Tỉ số phần trăm công việc của hai công nhân là

        40 \(\div\) 100 \(=\) 0,4 công việc

Nếu làm một mình thì mỗi người cần số thời gian là

       5 \(\div\) 0,4 \(=\) 12,5 giờ

Đổi \(=\) 

Lưu ý đổi bạn tự là 

  Mình sợ sai lắm . Mình sắp lên lớp 6 

Chúc bạn Thu Hằng học giỏi

24 tháng 5 2017

Nếu làm 1 mình để xong công việc thì mỗi người cần số thờ gian là

              \(2+3=5\)giờ

                            Đáp số 5 giờ

Không biết có đúng không mình mới sắp lên lớp 6 

24 tháng 5 2017

\(A=\frac{\sqrt{3-\sqrt{7}}-\sqrt{3+\sqrt{7}}}{\sqrt{3-\sqrt{2}}}\)

\(\Rightarrow A^2=\frac{3-\sqrt{7}+3+\sqrt{7}-2\sqrt{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}}{3-\sqrt{2}}\)

  \(=\frac{6-2\sqrt{3^2-7}}{3-\sqrt{2}}\)\(=\frac{6-2\sqrt{2}}{3-\sqrt{2}}=\frac{2\left(3-\sqrt{2}\right)}{3-\sqrt{2}}=2\)

Hay \(A^2=2\Rightarrow\orbr{\begin{cases}A=\sqrt{2}\\A=-\sqrt{2}\end{cases}}\)

24 tháng 5 2017

From \(a+b+c+ab+bc+ca=6abc\)

\(\Rightarrow\frac{1}{bc}+\frac{1}{ac}+\frac{1}{ab}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

Let \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\) we have

\(x^2+y^2+z^2\ge3\forall\hept{\begin{cases}x+y+z+xy+yz+xz=6\\x,y,z>0\end{cases}}\)

Áp dụng BĐT AM-GM ta có:

\(x^2+1\ge2\sqrt{x^2}=2x\)

\(y^2+1\ge2\sqrt{y^2}=2y\)

\(z^2+1\ge2\sqrt{z^2}=2z\)

Cộng theo vế 3 BĐT trên ta có:

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\left(1\right)\)

Lại có BĐT quen thuộc \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\left(2\right)\)

Cộng theo vế của \(\left(1\right);\left(2\right)\) ta có:

\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)+3\ge2\cdot6=12\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\Rightarrow x^2+y^2+z^2\ge3\)

Đẳng thức xảy ra khi \(a=b=c=1\)

#Nguồn:Xem câu hỏi (tui tự chép tui hihi :v)

24 tháng 5 2017

P = \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)

hay 2P \(\ge\frac{2\left(a+b+c\right)}{abc}\)   (1)

mặt khác theo Cauchy ta có \(\frac{1}{a^2}+1\ge\frac{2}{a}\)

do đó P \(\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-3\) hay P \(\ge\frac{2\left(ab+bc+ca\right)}{abc}-3\)   (2)

từ (1) và (2) suy ra 3P \(\ge\frac{2\left(a+b+c+ab+bc+ca\right)}{abc}-3=9\)

hay P \(\ge\)3

24 tháng 5 2017

0 hiểu gì hết

24 tháng 5 2017

bn nói mk chả hỉu j hết!