Tìm ba số tự nhiên, biết rằng BCNN của chúng bằng 360, số thứ nhất và số thứ hai tỉ lệ nghịch với 3 và 2, số thứ hai và số thứ ba tỉ lệ thuận với 2 và 3.
giải cho mk bài nay vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì 24 chia hết cho 12
nên => UCLN ( 12,24 ) = 24
vậy ......
a, P + 3x\(^{^2}\) - 4xy = 6y\(^{^2}\) - 9xy + x\(^2\)
=> P = 6y\(^2\)- 9xy + x\(^2\)+ 4xy - 3x\(^2\)= 6y\(^2\)- 5xy - 2x\(^2\)
=> P = 6y\(^2\) - 5xy - 2x\(^2\)
b,
4y\(^2\) - 8xy - P = 5x\(^2\) - 12xy + 4y\(^2\)
=> P = 4y\(^2\) - 8xy - 5x\(^2\) + 12xy - 4y\(^2\) = 4xy - 5x\(^2\)
=> P = 4xy - 5x\(^2\)
c,
P - ( x\(^2\) - 2y\(^2\) + 3z\(^2\) ) + 3x\(^2\) - y\(^2\) + 2z\(^2\)= 2x\(^2\) - 3y\(^2\) -z\(^2\)
= P + 2x\(^2\) + y\(^2\) - z\(^2\) = 2x\(^2\) - 3y\(^2\) - z\(^2\)
=> P = 2x\(^2\) - 3y\(^2\) - z\(^2\) - 2x\(^2\) - y\(^2\) + z\(^2\)
=> P = -2y\(^2\)
a, f(1) = 100 + 99 + ... + 2 + 1 + 1
=> f(x) = (100 + 1) . 100 : 2 + 1 "100 là số số hạng từ 1 -> 100"
=> f(x) = 4951
Hihi..
b, g(1) = 1 + 1 + 1 +...+ 1 + 1 (2016 số 1 theo cách lấy số mũ lớn nhất của x cộng thêm 1)
g(1) = 1 . 2016
g(1) = 2016
g(-1) = 1 + (-1) + (-1)2 + ... + (-1)2014 + (-1)2015
g(-1) = [ 1 + (-1)2 + ... + (-1)2014 ] + [ (-1) + (-1)3 + ... + (-1)2015 ]
g(-1) = [ 1 . 1008 ] + [ (-1) . 1008 ]
g(-1) = 1008 - 1008
g(-1) = 0
k nha!!