K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2017

chú ý\(x=\sqrt{x}^2\) tương tự với y , và các số tự nhiên dương

\(A=\frac{\sqrt{x}^2+2\sqrt{x}-3}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)}=\sqrt{x}+3\)

\(B=\frac{\left(2\sqrt{y}\right)^2+3\sqrt{y}-7}{4\sqrt{y}+7}=\frac{\left(\sqrt{y}-1\right)\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}=\sqrt{y}-1\)

\(C=\frac{\sqrt{x}^2\sqrt{y}-\sqrt{y}^2\sqrt{x}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{xy}\)

\(D=\frac{\sqrt{x}^2-3\sqrt{x}-4}{\sqrt{x}^2-\sqrt{x}-12}=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)}\)

\(E=\sqrt{1+2\sqrt{5}+5}+\sqrt{\sqrt{5}-2\sqrt{5}+1}=\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

=>\(E=1+\sqrt{5}+\sqrt{5}-1=2\sqrt{5}\)

CÂU CUỐI chưa làm đc

28 tháng 5 2017

ý cuối cùng này :

\(D=\sqrt{13-4\sqrt{10}}+\sqrt{13+4\sqrt{10}}\)lấy bình phương 2 vế ta có

\(D^2=13-4\sqrt{10}+13+4\sqrt{10}+2\sqrt{13-4\sqrt{10}}\sqrt{13+4\sqrt{10}}\)

\(D^2=26+2\sqrt{13^2-16\sqrt{10}^2}\Leftrightarrow D^2=26+2\sqrt{9}\)

\(D^2=32\Leftrightarrow D=\sqrt{32}=4\sqrt{2}\)

29 tháng 5 2017

Theo đề bài thì ta có:

\(\frac{1}{a+b+1}=1-\frac{1}{b+c+1}+1-\frac{1}{c+a+1}=\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\)

\(\ge2.\sqrt{\frac{\left(b+c\right)\left(c+a\right)}{\left(b+c+1\right)\left(c+a+1\right)}}\left(1\right)\)

Tương tự ta có:

\(\hept{\begin{cases}\frac{1}{b+c+1}\ge2.\sqrt{\frac{\left(a+b\right)\left(c+a\right)}{\left(a+b+1\right)\left(c+a+1\right)}1}\left(2\right)\\\frac{1}{c+a+1}\ge2.\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{\left(a+b+1\right)\left(b+c+1\right)}}\left(3\right)\end{cases}}\)

Nhân (1), (2), (3) vế theo vế ta được

\(\frac{1}{a+b+1}.\frac{1}{b+c+1}.\frac{1}{c+a+1}\ge8.\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{1}{8}\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{4}\)

21 tháng 9 2019

sao khó hiểu vậy

27 tháng 5 2017

nấu chín con gà 

27 tháng 5 2017

Không được đăng các câu hỏi không liên quan đến Toán

27 tháng 5 2017

bạn chỉ cần cố gắng là làm được