Tìm GTNN của biểu thức A = \(\sqrt{x^2-2x+1}+\sqrt{x^2+6x+9}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TT
48
LQ
3
VT
28 tháng 5 2017
Đề sai nhé!
a3 - a2 + a - 1 = 4 nên (a - 1)(a2 + 1) = 4.
do đó a > 1.
LQ
0
VC
20
28 tháng 5 2017
Mình gợi ý nha :
\(x_1^5+x_2^5=\left(x_1^3+x_2^3\right)\left(x_1^2+x_2^2\right)-x_1^2x_2^2\left(x_1+x_2\right)\)
\(=\left(S^3-3SP\right)\left(S^2-2P\right)-SP^2\)
28 tháng 5 2017
Đề sai kìa bạn
Thử với giá trị nhỏ nhất :
\(\sqrt{5.0+4}+\sqrt{5.0+4}+\sqrt{5.0+4}=2+2+2+=6< 7\)
Chưa nhìn cũng biết câu 2 sai lun
A=\(\sqrt{x^2-2x+1}+\sqrt{x^2+6x+9}=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+3\right)^2}\)=|x-1|+|x+3|=|1-x|+|x+3|
Áp dụng bđt |a|+|b|\(\ge\)|a+b| ta được: A=|1-x|+|x+3|\(\ge\)|1-x+x+3|=4
Dấu "=" xảy ra khi (1-x)(x+3)\(\ge\)0 <=> \(-3\le x\le1\)
Vậy Amin=4 khi \(-3\le x\le1\)
A = \(\sqrt{x^2-2x+1}+\sqrt{x^2+6x+9}\)
= \(\sqrt{\left(1-x\right)^2}+\sqrt{\left(x+3\right)^2}\)
= 1 - x + x + 3
= 4