K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

Cho thêm điều kiện đi bạn VD a+b+c=3

3 tháng 6 2017

\(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\Rightarrow A=\frac{3}{\sqrt{x}+3}\le\frac{3}{3}=1\)

\(\Rightarrow A_{Max}=1\Leftrightarrow x=0\)

3 tháng 6 2017

thanks pn nhìu nha

3 tháng 6 2017

MK mới học lớp 8 thui nên làm được bài 4

Câu 4:

a)\(3x^2-4x+1\)

\(\Leftrightarrow3x^2-3x-x+1\)

\(\Leftrightarrow3x\left(x-1\right)-\left(x-1\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(x-1\right)\)

b)\(x^2-y^2+4x+4\)

\(\Leftrightarrow x^2+4x+4-y^2\)

\(\Leftrightarrow\left(x+2\right)^2-y^2\)

\(\Leftrightarrow\left(x+2-y\right)\left(x+2+y\right)\)

3 tháng 6 2017

Áp dụng BĐT Cosi:

\(\frac{a^4}{\left(a+2\right)\left(b+2\right)}+\frac{a+2}{27}+\frac{b+2}{27}+\frac{1}{9}>=4\sqrt[4]{\frac{\left(a+2\right)\left(b+2\right)}{27.27.9}.\frac{a^4}{\left(a+2\right)\left(b+2\right)}}...\)

\(>=\frac{4}{9}a\)

Tương tự

\(=>VT>=\frac{4}{9}\left(a+b+c\right)-\frac{3}{9}-2\left(\frac{a+2}{9}+\frac{b+2}{9}+\frac{c+2}{9}\right)=\frac{1}{3}.\)

Dấu "="xảy ra khi a=b=c=1

3 tháng 6 2017

ta có \(\sqrt{x-2\sqrt{x-9}}=\sqrt{\left(x-9\right)-2\sqrt{x-9}+1+8}=\sqrt{\left(1-\sqrt{x-9}\right)^2+\left(\sqrt{8}\right)^2}.\)

   Tương tự ta cũng có \(\sqrt{x+2\sqrt{x-9}}=\sqrt{\left(\sqrt{x-9}+1\right)^2+\left(\sqrt{8}\right)^2}\)

    Áp dụng BĐT \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)   ( bẠN TỰ CM NHA)

          Dấu bằng xảy ra khi ad=bc

Ta có \(A\ge\sqrt{\left(1-\sqrt{x-9}+\sqrt{x-9}+1\right)^2+\left(\sqrt{8}+\sqrt{8}\right)^2}\)

    \(\Rightarrow A\ge6\)

Dấu bằng xảy ra khi \(\left(1-\sqrt{x-9}\right)\sqrt{8}=\left(\sqrt{x-9}+1\right)\sqrt{8}\)

                             hay X = 9

Vậy Min A= 6 khi X=9

3 tháng 6 2017

Điều kiện: x\(\ge\)9

\(A=\sqrt{x-2\sqrt{x-5-4}}+\sqrt{x+2\sqrt{x-5-4}}=\sqrt{x-2\sqrt{x-9}}+\sqrt{x+2\sqrt{x-9}}\)

\(A=\sqrt{x-9-2\sqrt{x-9}+1+8}+\sqrt{x-9+2\sqrt{x-9}+1+8}\)

\(A=\sqrt{\left(\sqrt{x-9}-1\right)^2+8}+\sqrt{\left(\sqrt{x-9}+1\right)^2+8}\)

Ta nhận thấy: \(\sqrt{\left(\sqrt{x-9}-1\right)^2+8}\ge\sqrt{8}\) Và \(\sqrt{\left(\sqrt{x-9}+1\right)^2+8}>\sqrt{9}\)Với mọi x\(\ge\)9

=>  A đạt giá trị nhỏ nhất khi \(\left(\sqrt{x-9}-1\right)^2=0\) <=> x=10

=> Giá trị nhỏ nhất của A là: \(\sqrt{8}+\sqrt{12}=2\sqrt{2}+2\sqrt{3}=2\left(\sqrt{2}+\sqrt{3}\right)\)

3 tháng 6 2017

thiếu dữ kiện phương trình bậc 2 ko làm đc nhé

3 tháng 6 2017

Ta có : f(x) = 3 

Nên -2x + 1 = -3 

Do đó : -2x = -4 

<=> x = -4 : -2 

<=> x = 2

Đáp án C nha bạn 

3 tháng 6 2017

C bạn nha ^^

3 tháng 6 2017
  1. \(=\frac{\sqrt{35}\left(\sqrt{5}+\sqrt{7}\right)}{\sqrt{35}}=\sqrt{5}+\sqrt{7}\)
  2. \(=\frac{4\sqrt{2}-3\sqrt{3}+1}{\sqrt{3}\sqrt{2}}=\frac{4}{\sqrt{3}}+\frac{3}{\sqrt{2}}+\frac{1}{\sqrt{6}}\)
  3. \(=\frac{\left(3\sqrt{11}-3\sqrt{3}-\sqrt{11}\right)}{\sqrt{11}}+3\sqrt{2}=\frac{\left(2\sqrt{11}-3\sqrt{3}\right)}{\sqrt{11}}+3\sqrt{2}\)\(=\frac{2\sqrt{11}-3\sqrt{3}+3\sqrt{22}}{\sqrt{11}}\)
3 tháng 6 2017

câu c bạn làm nhầm đề bài r kìa Hoàng Anh Tuấn 

\(\sqrt{18}=3\sqrt{2}\) chứ sao lại bằng \(3\sqrt{3}\)đc