Cho đường tròn tâm O, bán kính R, hai đường kính AB và CD vuông góc với nhau. E là điểm bất kì trên cung AD. Nối EC cắt OA tại M, nối EB cắt OD tại N. C/m \(\frac{OM}{AM}.\frac{ON}{DN}\)Là 1 hằng số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Xét (O) có
CM,CA là tiếp tuyến
nên OC là phân giác của góc MOA(1) và CM=CA
Xet (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
b:
Xét ΔCOD vuông tại O có OM là đường cao
nên MC*MD=OM^2
c: \(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)
Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn.
Trong một đường tròn:
Ta có: \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}\ge\frac{a+b+c}{2}\)
Áp dụng bất đẳng thức AM-GM cho vế VT và VP:
\(VT=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge3\sqrt[3]{\frac{a^2b^2c^2}{8abc}}=3\sqrt[3]{\frac{abc}{8}}\) (1)
\(VP=\frac{a+b+c}{2}\Leftrightarrow\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\ge3\sqrt[3]{\frac{abc}{8}}\) (2)
Từ (1) và (2) suy ra ĐPCM
ĐKXĐ \(x>0;x\ne4\)
Để A nghuyên \(\Leftrightarrow\frac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}\) nguyên hay \(\sqrt{x}\left(\sqrt{x}-2\right)\inƯ\left(1\right)=\pm1\)
Xét \(\sqrt{x}\left(\sqrt{x}-2\right)=1\Leftrightarrow x-2\sqrt{x}=1\Leftrightarrow x-2\sqrt{x}-1=0\Rightarrow x\notin Z\)
Xét \(\sqrt{x}\left(\sqrt{x}-2\right)=-1\Leftrightarrow x-2\sqrt{x}+1=0\Leftrightarrow\left(\sqrt{x}-1\right)^2=0\Rightarrow x=1\)(TM)
Vậy x = 1
Ta có: \(A=\frac{1}{\sqrt{x}\left(\sqrt{x}-2\right)}\) ĐKTM: \(x\ge0;x\ne4\)
Để x nguyên thì A nguyên, khi đó: \(\sqrt{x}\left(\sqrt{x}-2\right)\inƯ\left(\pm1\right)\)
Suy ra: \(\orbr{\begin{cases}\sqrt{x}\left(\sqrt{x}-2\right)=1\\\sqrt{x}\left(\sqrt{x}-2\right)=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x-2\sqrt{x}-1=0\\\left(\sqrt{x}-1\right)^2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}loai\\x=1\end{cases}}}\)
Vậy nghiệm nguyên của A=1
(Chỗ \(x-2\sqrt{x}-1=0\) loại vì nếu trừ ra thì sẽ thấy phương trình âm, nhưng so với ĐK thì \(x>0\) để căn có nghĩa. Thế nên ta loại)