K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có \(\hept{\begin{cases}\left(x-2\right)^{2012}\ge0\\\left|y^2-9\right|^{2014}\ge0\end{cases}\forall x,y}\)

\(\Leftrightarrow\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}\ge0\forall x,y\)

Do đó để ( x - 2)2012 + |y2 - 9|2014 = 0 \(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2=0\\\left|y^2-9\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\y^2-9=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\y^2=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)  hoặc \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)

Vậy \(\hept{\begin{cases}x=2\\y=-3\end{cases}}\)  hoặc \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)

~~~~ Học tốt ~~~~~

29 tháng 2 2020

Vì \(\left(x-2\right)^{2012}\ge0\forall x\)và \(\left|y^2-9\right|^{2014}\ge0\forall y\)

\(\Rightarrow\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}\ge0\forall x,y\)

mà \(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)( giả thiết )

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y^2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=\pm3\end{cases}}\)

Vậy \(\hept{\begin{cases}x=2\\y=\pm3\end{cases}}\)

29 tháng 2 2020

Bài này easy lắm bạn

B A C D E F I Hình ảnh chỉ mang tính chất minh họa

a) Xét \(\Delta\) ABD và \(\Delta\)ACE có

AB = AC ( gt)

\(\widehat{BAC}\) : góc chung

AD = AE ( gt)

=> \(\Delta\)ABD = \(\Delta\) ACE  (c-g-c)

=> BD = CE  ( 2 cạnh tương ứng )

+) Ta có \(\hept{\begin{cases}AB=AC\left(gt\right)\\AE=AD\left(cmt\right)\end{cases}}\)

\(\Rightarrow AB-AE=AC-AD\)

\(\Rightarrow\)BE = CD 

+) Xét \(\Delta\)CEB và \(\Delta\)BDC có

CE = BD ( cmt)

EB = DC ( cmt)

CB: cạnh chung

=> \(\Delta\)CEB = \(\Delta\) BDC  (c-c-c)

2 câu này đã nhé

29 tháng 2 2020

obey 

safety 

29 tháng 2 2020

1. Young children are expected to show ......obey..... to their parents. ( obey)

2. When cycling on the roads , remember : ......safety...... first .( safe)

#M