K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

AO là đường j ms đc ?

22 tháng 6 2017

\(x^3-3x^2-8x+40=8\sqrt[4]{4x+4}\)

\(\Leftrightarrow x^3-3x^2-8x+24=8\sqrt[4]{4x+4}-16\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-8\right)=\frac{4096\left(4x+4\right)-65536}{8\sqrt[4]{4x+4}+16}\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-8\right)=\frac{16384\left(x-3\right)}{8\sqrt[4]{4x+4}+16}\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-8\right)-\frac{16384\left(x-3\right)}{8\sqrt[4]{4x+4}+16}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-8-\frac{16384}{8\sqrt[4]{4x+4}+16}\right)=0\)

Dễ thấy: \(x^2-8-\frac{16384}{8\sqrt[4]{4x+4}+16}=0\) vô nghiệm

Nên \(x-3=0\Rightarrow x=3\)

22 tháng 6 2017

Dùng cốc cốc cũng chia sẽ cho mọi người thêm 1 cách giải khác,mặt dù nó không giải chi tiết ra :v

22 tháng 6 2017

Biến đổi VT và VP của phương trình ta có :

\(x^3-3x^2-8x+40=8\sqrt[4]{4x+4}\)

\(\Leftrightarrow x^3-3x^2+\left(-8\right)x+40=x^3-3x^2-8x+40\)

\(VP=8\left(4x+4\right)^{\frac{1}{4}}=\sqrt{2^7}\left(x+1\right)^{\frac{1}{4}}\)

22 tháng 6 2017

lạy thanh niên copy cốc cốc

22 tháng 6 2017

GTLN là cái j thế ?

22 tháng 6 2017

bc =2a là s v

22 tháng 6 2017

\(a.\)Ta có: \(3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{45} \)

                 \(2\sqrt{10}=\sqrt{4}\cdot\sqrt{10}=\sqrt{40}\)

        Mà    \(45>40\Leftrightarrow\sqrt{45}>\sqrt{40}\)

                                Vậy \(3\sqrt{5}>2\sqrt{10}\)

\(b.\)Ta có:\(2\sqrt{5}=\sqrt{4}\cdot\sqrt{5}=\sqrt{20}\)

        Mà    \(20 < 21 \Leftrightarrow \sqrt{20} < \sqrt{21}\)

                                Vậy \(2\sqrt{5} < \sqrt{21}\)

\(c.\)Ta có: \(\left(\sqrt{7}+\sqrt{15}\right)^2=7+2\cdot\sqrt{7}\cdot\sqrt{15}+15=22+2\sqrt{105}=22+\sqrt{420}\)

                 \(7^2=49=22+\sqrt{27^2}=22+\sqrt{729}\)

       Lại có:\(420< 729\Rightarrow\sqrt{420}< \sqrt{729}\) 

                 \(\Rightarrow22+\sqrt{420}< 22+\sqrt{729}\)

                 \(\Rightarrow\left(\sqrt{7}+\sqrt{15}\right)^2< 7^2\)

                  Vậy     \(\sqrt{7}+\sqrt{15}< 7\)