tính số đo góc \(\alpha\)pít
a) \(\tan\alpha+cotg\alpha=2\)
b) \(7\sin^2\alpha+5\cos^2\alpha\frac{13}{2}\)
m.n giúp mk giải bài này vs ạ !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-3x^2-8x+40=8\sqrt[4]{4x+4}\)
\(\Leftrightarrow x^3-3x^2-8x+24=8\sqrt[4]{4x+4}-16\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-8\right)=\frac{4096\left(4x+4\right)-65536}{8\sqrt[4]{4x+4}+16}\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-8\right)=\frac{16384\left(x-3\right)}{8\sqrt[4]{4x+4}+16}\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-8\right)-\frac{16384\left(x-3\right)}{8\sqrt[4]{4x+4}+16}=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-8-\frac{16384}{8\sqrt[4]{4x+4}+16}\right)=0\)
Dễ thấy: \(x^2-8-\frac{16384}{8\sqrt[4]{4x+4}+16}=0\) vô nghiệm
Nên \(x-3=0\Rightarrow x=3\)
Dùng cốc cốc cũng chia sẽ cho mọi người thêm 1 cách giải khác,mặt dù nó không giải chi tiết ra :v
Biến đổi VT và VP của phương trình ta có :
\(x^3-3x^2-8x+40=8\sqrt[4]{4x+4}\)
\(\Leftrightarrow x^3-3x^2+\left(-8\right)x+40=x^3-3x^2-8x+40\)
\(VP=8\left(4x+4\right)^{\frac{1}{4}}=\sqrt{2^7}\left(x+1\right)^{\frac{1}{4}}\)
\(a.\)Ta có: \(3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{45} \)
\(2\sqrt{10}=\sqrt{4}\cdot\sqrt{10}=\sqrt{40}\)
Mà \(45>40\Leftrightarrow\sqrt{45}>\sqrt{40}\)
Vậy \(3\sqrt{5}>2\sqrt{10}\)
\(b.\)Ta có:\(2\sqrt{5}=\sqrt{4}\cdot\sqrt{5}=\sqrt{20}\)
Mà \(20 < 21 \Leftrightarrow \sqrt{20} < \sqrt{21}\)
Vậy \(2\sqrt{5} < \sqrt{21}\)
\(c.\)Ta có: \(\left(\sqrt{7}+\sqrt{15}\right)^2=7+2\cdot\sqrt{7}\cdot\sqrt{15}+15=22+2\sqrt{105}=22+\sqrt{420}\)
\(7^2=49=22+\sqrt{27^2}=22+\sqrt{729}\)
Lại có:\(420< 729\Rightarrow\sqrt{420}< \sqrt{729}\)
\(\Rightarrow22+\sqrt{420}< 22+\sqrt{729}\)
\(\Rightarrow\left(\sqrt{7}+\sqrt{15}\right)^2< 7^2\)
Vậy \(\sqrt{7}+\sqrt{15}< 7\)