Giải phương trình
\(\sqrt{x+3}+\sqrt{2-x}=5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại đây nhé.
Câu hỏi của Vũ Huy Hiệu - Toán lớp 9 - Học toán với OnlineMath
HÌNH NHƯ = 1,414213562 NHA tịch thiên du phong !
K VÀ KB NHA
\(\frac{S}{\sqrt{2}}=\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)
=\(\frac{2+\sqrt{3}}{2+1+\sqrt{3}}+\frac{2-\sqrt{3}}{2+1-\sqrt{3}}\) =\(\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\)
=\(\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{6}\) =\(\frac{6}{6}=1\)
SUY RA S=\(\sqrt{2}\)
áp dụng bất đẳng thức: (a+b+c)^2<=3(a^2+b^2+c^2):
[√(4a+1)+√(4b+1)+√(4c+1)]^2
<= 3[4(a+b+c)+3]=21<25
=>√(4a+1)+√(4b+1)+√(4c+1)<5
cosi : \(\sqrt{4a+1}\)\(\sqrt{1}\)<\(\frac{4a+1+1}{2}\)= 2a + 1. tương tự \(\sqrt{4b+1}\)\(\sqrt{1}\)<\(\frac{4b+1+1}{2}\)= 2b + 1; \(\sqrt{4c+1}\)\(\sqrt{1}\)<\(\frac{4c+1+1}{2}\)= 2c + 1. Nên VT < 2(a+b+c) +3 = 5. Dấu = xảy ra khi và chỉ khi a=b=c = 1/3
a) ĐKXĐ: \(\hept{\begin{cases}\sqrt{2x-1}\ge0\\\sqrt{x-\sqrt{2x-1}}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge\sqrt{2x-1}\Leftrightarrow\left(x-1\right)^2\ge0,\forall x\end{cases}\Rightarrow}x\ge\frac{1}{2}}\)(1)
Bình phương 2 vế PT ta được: \(2\sqrt{\left(x+\sqrt{2x-1}\right)\left(x-\sqrt{2x-1}\right)}=2-2x\Leftrightarrow\sqrt{\left(x\right)^2-\left(\sqrt{2x-1}\right)^2}=1-x\)
\(\Leftrightarrow\sqrt{x^2-2x+1}=1-x\Leftrightarrow\left|x-1\right|=1-x\Rightarrow x-1\le0\)(vì \(\left|a\right|=-a\))
\(\Rightarrow x\le1\)(2)
Kết hợp (1) và (2) ta được tập nghiệm của PT là \(\frac{1}{2}\le x\le1\)
b) ĐKXĐ: \(\hept{\begin{cases}\sqrt{2x-5}\ge0\\x-2-\sqrt{2x-5}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{5}{2}\\\left(x-2\right)^2\ge2x-5\Leftrightarrow\left(x-3\right)^2\ge0,\forall x\end{cases}\Rightarrow}x\ge\frac{5}{2}}\)(1)
Bình phương 2 vế PT ta được: \(2\sqrt{\left(x+2+3\sqrt{2x-5}\right)\left(x-2-\sqrt{2x-5}\right)}=2\left(4-x-\sqrt{2x-5}\right)\)
Đặt \(x+2=a;\sqrt{2x-5}=b\)(\(b\ge0\)), ta được phương trình tương đương:
\(\sqrt{\left(a+3b\right)\left(a-4-b\right)}=-a+6-b\)
\(\Leftrightarrow a^2-4a-ab+3ab-12b-3b^2=36+a^2+b^2+2ab-12a-12b\)
\(\Leftrightarrow4b^2-8a+36=0\Leftrightarrow b^2=2a-9\Leftrightarrow2x-5=2x+4-9\Leftrightarrow x\in R\)(2)
Kết hợp (1) và (2) ta được tập nghiệm của PT là \(x\ge\frac{5}{2}\)
1) \(\frac{1}{a-b}\cdot\sqrt{a^4\cdot\left(a-b\right)^2}=\frac{1}{a-b}\cdot a^2\cdot\left|a-b\right|=a^2\)(Vì a > b => a - b > 0 và a^2 luôn dương với mọi a)
2) \(\sqrt{\frac{2a}{3}}\cdot\sqrt{\frac{3a}{8}}=\sqrt{\frac{6a^2}{24}}=\sqrt{\frac{a^2}{4}}=\frac{a}{2}\)(vì \(a\ge0\))
3) \(\sqrt{13}a\cdot\sqrt{\frac{52}{a}}=\frac{a\cdot\sqrt{13}\cdot\sqrt{4\cdot13}}{\sqrt{a}}=\frac{2a\cdot\sqrt{13\cdot13}}{\sqrt{a}}=26\sqrt{a}\)(vì a > 0)
sai đề hay vô nghiệm ko biết