Cho tam giác ABC. Trực tâm H, M là trung điểm của BC. Đường thẳng vuông góc MH tại H cắt AB, AC theo thứ tự tại I và K
a) CM : \(\Delta AIH\)đồng dạng với \(\Delta CHM\)
b) CM : HI = HK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D) 64x^3-1/8y^3
= (4x)^3 + (1/2y)^3
= ( 4x + 1/2y ) [ (4x)^2 - 4x.1/2y + (1/2y)^2 ]
E) 125x^6-27y^9
( câu này mik chưa rõ nên vx chưa tek giải cho bn )
HOk tốt nhé
\(\left(2x+3\right)^2+\left(2x+5\right)-2.\left(2x+3\right).\left(2x+5\right)\)
\(=\left(4x+9\right)+\left(2x+5\right)-\left(4x+6\right).\left(2x+5\right)\)
\(=\left(6x+14\right)-\left(8x+30\right)\)
\(=-2x+\left(-16\right)\)
\(\left(2n-1\right)-\left(2n-1\right)=\left(2n-1\right)\left(\left(2n-1\right)^2-1\right)=\left(2n-1\right)\left(4n^2-4n+1-1\right)\)
\(=\left(2n-1\right)\left(n-1\right)4n\)
n(n-1) là tích 2 số nguyên liên tiếp => n(n-1) chia hết cho 2.
=>4n(n-1)(2n-1) chia hết cho 2*4=8
a, 16x2 - (4x - 5)2 = 15
16x2 - 4x2 - 52 = 15
12x2 - 52 = 15
12x2 - 25 = 15
2x2 = 15 + 25 = 40
x2 = 40 : 2
x2 = 20
=> \(x=\sqrt{20}\)
Các câu kia tương tự
Ta có: \(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì n,(n+1),(n+2) là 3 số lên tiếp nên chúng luôn chia hết cho 6