Cho tam giác ABC, trung tuyến AM. Gọi I là trung điểm của AM, D là giao điểm của BI và AC.
a ) Chứng minh : \(AD=\frac{1}{2}DC\)
b ) So sánh độ dài BD và ID
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
III.
a) \(\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
\(\Leftrightarrow\)\(25x^2+10x+1-25x^2+9=30\)
\(\Leftrightarrow\)\(10x=20\)
\(\Leftrightarrow\)\(x=2\)
Vậy...
b) \(\left(3x-1\right)^2+2\left(x+3\right)^2+11\left(x+1\right)\left(1-x\right)=6\)
\(\Leftrightarrow\)\(9x^2-6x+1+2x^2+12x+18+11-11x^2=6\)
\(\Leftrightarrow\)\(6x=-24\)
\(\Leftrightarrow\)\(x=-4\)
Vậy....
\(D=x^2-4x+5y^2+4y-2\)
\(D=\left(x^2-4x+4\right)+5\left(y^2+2y.\frac{2}{5}+\frac{4}{25}\right)-4-\frac{4}{5}-2\)
\(D=\left(x-2\right)^2+5\left(y+\frac{2}{5}\right)^2-\frac{34}{5}\)
Ta thấy: \(\left(x-2\right)^2\ge0\forall x;\)\(5\left(y+\frac{2}{5}\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-2\right)^2+5\left(x+\frac{2}{5}\right)^2-\frac{34}{5}\ge-\frac{34}{5}\)\(\Rightarrow D\ge-\frac{34}{5}.\)
Vậy \(Min_D=-\frac{34}{5}.\)Dấu "=" xảy ra khi \(\hept{\begin{cases}x=2\\y=-\frac{2}{5}\end{cases}.}\)
\(mx.\left(x+1\right)>mx.\left(x+m\right)+m^2-1\Leftrightarrow mx^2+mx>mx^2+m^2x+m^2-1\Leftrightarrow mx>m^2x+m^2-1\\ \).
\(\Leftrightarrow mx-m^2x-m^2+1>0\Leftrightarrow mx.\left(1-m\right)+\left(1-m\right).\left(1+m\right)>0\)
\(\Leftrightarrow\left(1-m\right).\left(mx+1+m\right)>0\)
+ Nếu \(m>1\Rightarrow1-m< 0\Rightarrow mx+1+m< 0\Leftrightarrow m.\left(x+1\right)< -1\)
Mà \(m>1\Rightarrow x+1< -\frac{1}{1}=-1\Leftrightarrow x< -2\)
+ Nếu m<1 thì làm tiếp
D A B C l M K
Từ M kẻ MK // BD (K thuộc DC)
a, Xét t/g DBC có: MK // BD, MB = MC (gt)
=> MK là đường trung bình của t/g DBC
=> CK = DK (1)
Xét t/g AMK có: MK // ID, IA = IM (gt)
=> ID là đường trung bình của t/g AMK
=> DA = DK (2)
Từ (1) và (2) => CK = DA
Mà CK = \(\frac{DC}{2}\)
=>\(DA=\frac{DC}{2}\left(đpcm\right)\)
b, Vì MK là đường trung bình của t/g DBC
=> \(MK=\frac{BD}{2}\left(3\right)\)
Vì ID là đường trung bình của t/g AMK
=>\(ID=\frac{MK}{2}\left(4\right)\)
Từ (3) và (4) => BD > ID