K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2019

help me

26 tháng 3 2019

Tớ vẽ cái hình để tiện nghĩ:v
A B C E K D H

26 tháng 3 2019

Gọi giao điểm của AC với DB là H.

Xét tam giác AEB có:\(\hept{\begin{cases}\widehat{EAB}=\frac{60^0}{2}=30^0\\\widehat{EBA}=180^0-60^0-90^0=30^0\end{cases}\Rightarrow}\widehat{EAB}=\widehat{EBA}\Rightarrow\Delta AEB\)  cân tại E.

Do EK là đường cao nên đồng thời là đường trung tuyến suy ra AK=BK.

Ta có:\(\widehat{CEA}=180^0-\widehat{ACE}-\widehat{CAE}=180^0-90^0-30^0=60^0\)

Xét tam giác AEC và tam giác AEK có:AE là cạnh chung,^CAE=^KAE(có AE là phân giác) \(\Rightarrow\Delta AEC=\Delta AEK\left(ch-gn\right)\Rightarrow\widehat{CEA}=\widehat{KEA}=60^0\)

\(\Rightarrow\widehat{CEH}=180^0-\widehat{CEA}-\widehat{KEA}=180^0-60^0-60^0=60^0\Rightarrow\widehat{AEH}=120^0\)

Mặt khác:\(\widehat{AEB}=180^0-\widehat{CEA}=180^0-60^0=120^0\)

\(\Rightarrow\widehat{AEB}=\widehat{AEH}\)

Khi đó:\(\Delta EAH=\Delta EAB\left(g-c-g\right)\Rightarrow HA=HB\)

Mà \(\widehat{CAB}=60^0\Rightarrow\Delta AHB\) đều.

Lại có HK là đường trung tuyến(do KA=KB) nên HK là đường cao hay  \(HK\perp AB\).Mà \(EK\perp AB\) nên H,E,K thẳng hàng hay AC,BD,EK cùng đi qua một điểm.

26 tháng 3 2019

\(\Rightarrow\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}=0\) 

\(\Rightarrow\frac{x-1}{2011}-1+\frac{x-2}{2010}-1+\frac{x-3}{2009}-1+\frac{x-4}{2008}-1=0\) 

\(\Rightarrow\left(\frac{x-1}{2011}-1\right)+\left(\frac{x-2}{2010}-1\right)+\left(\frac{x-3}{2009}-1\right)+\left(\frac{x-4}{2008}-1\right)=0\) 

\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}+\frac{x-2012}{2009}+\frac{x-2012}{2008}=0\) 

\(\Rightarrow\left(x-2012\right)\cdot\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\right)\) 

Vì \(\frac{1}{2011}< \frac{1}{2009}\) và \(\frac{1}{2010}< \frac{1}{2008}\) nên \(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\ne0\) 

\(\rightarrow x-2012=0\) 

\(\rightarrow x=2012\) 

Vậy x = 2012.

26 tháng 3 2019

Sorry bài mik làm sai nhé!

26 tháng 3 2019

\(\widebat{AnB}=360^0-\widebat{AmB}=360^0-90^0=270^0\).

26 tháng 3 2019

Đặt \(x^2+2x+20=a^2\left(a\ge0\right)\)

\(\Leftrightarrow x^2+2x+1+19=a^2\)

\(\Leftrightarrow\left(x+1\right)^2+19=a^2\)

\(\Leftrightarrow a^2-\left(x+1\right)^2=19\)

\(\Leftrightarrow\left(a+x+1\right)\left(a-x-1\right)=19=19.1\)

Vì \(a\ge0;x\ge0\)nên\(\left(a+x+1\right)\ge\left(a-x-1\right)\)

Suy ra:\(\hept{\begin{cases}a+x+1=19\\a-x-1=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+x=18\\a-x=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=10\\x=8\end{cases}}\)(Phần này mình làm nhanh)

Vậy khi x=8 thì \(x^2+2x+20\)là số chính phương

26 tháng 3 2019

\(f\left(3\right)=\left(2-3\right).f\left(3-2\right)=\left(-1\right).f\left(1\right)=\left(-1\right).1=-1\)

\(f\left(5\right)=\left(2-5\right).f\left(5-2\right)=\left(-3\right).f\left(3\right)=\left(-3\right).\left(-1\right)=3\)

\(f\left(7\right)=\left(2-7\right).f\left(7-2\right)=\left(-5\right).f\left(5\right)=\left(-5\right).3=\left(-15\right)\)

26 tháng 3 2019

a,xét tam giác ABD và tam giác ACE có:

              AB=AC(gt)

   vì \(\widehat{ABC}\)=\(\widehat{ACB}\)suy ra \(\widehat{ABD}\)=\(\widehat{ACE}\)

              BD=CE(gt)

\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)ACE(c.g.c)

b,xét 2 tam giác vuông ADH và AEK có:

                AD=AE(theo câu a)

                \(\widehat{DAH}\)\(\widehat{EAK}\)(theo câu a)

\(\Rightarrow\)\(\Delta\)ADH=\(\Delta\)AEK(CH-GN)

\(\Rightarrow\)DH=EK

c,xét tam giác AHO và tam giác AKO có:

              AH=AK(theo câu b)

              AO cạnh chung

\(\Rightarrow\)\(\Delta\)AHO=\(\Delta\)AKO( cạnh góc vuông-cạnh huyền)

\(\Rightarrow\)\(\widehat{HAO}\)=\(\widehat{KAO}\)

\(\Rightarrow\)AO là phận giác của góc BAC

d,câu này dễ nên bn có thể tự làm tiếp nhé

             

16 tháng 4 2019

Do ab¯,ad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)

từ (gt) db¯+c=b^2+ d (2)

=> 10d+b+c=b^2 + d
=> 9d+c=b^2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9

+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)

+Với b= 9 thì 9d +c= 72 => 7<hoac = d<hoac=8, mà d lẻ nên d = 7

Thay vào (2) ta đc c = 9

Do a9¯, a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9 

=> a = 1 và abcd¯ = 1997, thử lại thấy thỏa mãn