Cho hàm số y=f(x)=\(6x-1-\sqrt{5}\left(2x-1\right)\)
Chứng tỏ hàm số trên là hàm số bậc nhất và hàm số đồng biến trên R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\) ( điều kiện : x>=1)
<=> \(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}}\)
<=> \(\sqrt{\left(\sqrt{x-1}+1\right)}^2+\sqrt{\left(\sqrt{x-1}-1\right)}^2=2\)
<=> \(|\sqrt{x-1}+1|+|\sqrt{x-1}-1|=2\)(1)
Vì \(\sqrt{x-1}\ge0\forall x\ge1\)
\(=>\sqrt{x-1}+1\ge1>0\)
<=> \(|\sqrt{x-1}+1|=\sqrt{x-1}+1\)
Phương trình (1) <=> \(\sqrt{x-1}+1+|\sqrt{x-1}-1|=2\)
Phần sau bạn xét 2 trường hợp \(\sqrt{x-1}-1\ge0\)và \(\sqrt{x-1}-1< 0\)để thay mỗi trường hợp vào phương trình (1) và tự làm nốt phần còn lại bạn nhé.
a, ^ACB = 900 ( góc nt chắn nửa đường tròn )
=> BC vuông AC
Lại có OM vuông AC ( gt ) => OM // BC
b, Vì OC = OA = R
=> tam giác AOC cân, OM vuông AC nên OM đồng thời là đường phân giác
=> ^AOM = ^MOC
Xét tam giác AMO và tam giác CMO ta có :
OA = OC = R
^AOM = ^MOC ( cmt )
OM _ chung
Vậy tam giác AMO = tam giác CMO ( ch - gn )
=> ^MAO = ^MCO = 900 ( 2 góc tương ứng )
=> MC là tiếp tuyến (O)
Answer:
\(^3\sqrt{x+1}+^3\sqrt{x-1}=^3\sqrt{5x}\)
\(\Leftrightarrow\left(^3\sqrt{x+1}+^3\sqrt{x-1}\right)^3=5x\)
\(\Leftrightarrow x+1+x-1+3^3\sqrt{\left(x+1\right).\left(x-1\right)}\left(^3\sqrt{x+1}+^3\sqrt{x-1}\right)=5x\)
\(\Leftrightarrow^3\sqrt{\left(x+1\right).\left(x-1\right)}^3\sqrt{5x}=x\)
\(\Leftrightarrow5x.\left(x+1\right).\left(x-1\right)=x^3\)
\(\Leftrightarrow5x^3-5x=x^3\)
\(\Leftrightarrow4x^3-5x=0\)
\(\Leftrightarrow x.\left(4x^2-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\4x^2-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\frac{\sqrt{5}}{2}\end{cases}}\)
a) Xét \(\Delta MPQ\)và \(\Delta NPQ\), ta có: \(PM=PN\left(gt\right);QM=QM\left(gt\right);\)PQ chung
\(\Rightarrow\Delta MPQ=\Delta NPQ\left(c.c.c\right)\)(đpcm)
b) Xét \(\Delta MPH\) và \(\Delta NPH\), ta có: \(PM=PN\left(gt\right);MH=NH\)(do H là trung điểm của MN); PH chung
\(\Rightarrow\Delta MPH=\Delta NPH\left(c.c.c\right)\)(đpcm)
c) Xét \(\Delta MNP\)có PM = PN (gt) \(\Rightarrow\Delta MNP\)cân tại P
Mà PH là trung tuyến của \(\Delta MNP\)(do H là trung điểm của MN) \(\Rightarrow\)PH là đường cao của \(\Delta MNP\)(tính chất tam giác cân)
\(\Rightarrow PH\perp MN\)(đpcm)
d) \(\Delta MNP\)cân tại P có trung tuyến PH \(\Rightarrow\)PH là đường phân giác trong \(\Delta MNP\)\(\Rightarrow\)đpcm
e) \(\Delta MNP\)cân tại P có trung tuyến PH \(\Rightarrow\)PH là đường trung trực của MN.(1)
Ta có \(QM=QN\left(gt\right)\)\(\Rightarrow\)Q nằm trên đường trung trực của MN (2)
Từ (1) và (2) hiển nhiên ta có P, H, Q thẳng hàng.
a) \(\hept{\begin{cases}3x+2y=4\\2x-y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}3x+2y=4\\4x-2y=2m\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{2m+4}{7}\\y=2x-m\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{2m+4}{7}\\y=\frac{8-3m}{7}\end{cases}}\)
Để phương trình có nghiệm \(\left(x,y\right)\)với \(x< 1,y< 1\)thì
\(\hept{\begin{cases}\frac{2m+4}{7}< 1\\\frac{8-3m}{7}< 1\end{cases}}\Leftrightarrow\hept{\begin{cases}2m< 3\\3m>1\end{cases}}\Leftrightarrow\frac{1}{3}< m< \frac{2}{3}\).
b) Để ba đường thẳng đã cho đồng quy thì:
\(\frac{2m+4}{7}+2.\frac{8-3m}{7}=3\Leftrightarrow m=-\frac{1}{4}\).
a) Với \(m=0\): hệ phương trình đã cho tương đương với:
\(\hept{\begin{cases}4y=10\\x=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=\frac{5}{2}\end{cases}}\)
Với \(m\ne0\): hệ có nghiệm duy nhất khi:
\(\frac{m}{1}\ne\frac{4}{m}\Leftrightarrow m\ne\pm2\)
Hệ có vô số nghiệm khi:
\(\frac{m}{1}=\frac{4}{m}=\frac{10-m}{4}\Leftrightarrow m=2\)
Hệ vô nghiệm khi:
\(\frac{m}{1}=\frac{4}{m}\ne\frac{10-m}{4}\Leftrightarrow m=-2\).
b) với \(m\ne\pm2\)hệ có nghiệm duy nhất.
\(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(4-my\right)+4y=10-m\\x=4-my\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(4-m^2\right)y=10-5m\\x=4-my\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{8-m}{m+2}\\y=\frac{5}{m+2}\end{cases}}\)
\(\hept{\begin{cases}\frac{8-m}{m+2}>0\\\frac{5}{m+2}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}8-m>0\\m+2>0\end{cases}}\Leftrightarrow-2< m< 8\)
c) \(\hept{\begin{cases}\frac{8-m}{m+2}=\frac{10-m-2}{m+2}=\frac{10}{m+2}-1\inℤ\\\frac{5}{m+2}\inℤ\end{cases}}\Leftrightarrow\frac{5}{m+2}\inℤ\)
\(\frac{5}{m+2}=t\inℤ\Rightarrow m=\frac{5}{t}-2\)
Để \(x,y\)dương thì \(-2< \frac{5}{t}-2< 8\Leftrightarrow0< \frac{5}{t}< 10\Rightarrow t\ge1\)
Vậy \(m=\frac{5}{t}-2\)với \(t\)nguyên dương thì thỏa mãn ycbt.
Answer:
Ta có:
\(y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\)
\(=6x-1-2\sqrt{5}x+\sqrt{5}\)
\(=x.\left(6-2\sqrt{5}\right)+\left(\sqrt{5}-1\right)\)
Mà: Hàm số bậc nhất có dạng \(y=ax+b\) trong đó: \(a,b\inℝ;a\ne0\)
Ta thấy:
\(a=6-2\sqrt{5}\ne0\)
\(b=\sqrt{5}-1\inℝ\)
\(\Rightarrow x.\left(6-2\sqrt{5}\right)+\left(\sqrt{5}-1\right)\) là hàm số bậc nhất
\(\Rightarrow y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\) là hàm số bậc nhất
Ta thấy:
Hệ số \(a=6-2\sqrt{5}\)
Mà: Hàm số đồng biến khi hệ số \(a>0\) và nghịch biến khi \(a< 0\)
Thấy được:
\(6-2\sqrt{5}>0\)
\(\Rightarrow a=6-2\sqrt{5}>0\)
Vậy hàm số \(y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\) đồng biến trên \(ℝ\)