Một khu vườn hình chữ nhật có chiều dài bằng 3 lần chiều rộng. Nếu tăng mỗi canh thêm 5m thì diện tích khu vườn tăng thêm 385m2 . Tính độ dài các cạnh khu vườn
Giải toán bằng cách lập phương trình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hình thang ABCD có:
\(MA=MB\left(gt\right)\)
\(NB=NC\left(gt\right)\)
\(\Rightarrow\)MN là đường trung bình của hình thang ABCD
\(\Rightarrow\)\(MN=\frac{AB+CD}{2}\)( định lý 4 về đường trung bình của hình thang )
Hay \(28=\frac{AB+CD}{2}\)
\(\Rightarrow AB+CD=28\cdot2=56\)
Mặt khác ta có: \(\frac{AB}{CD}=\frac{3}{5}\left(gt\right)\)
Hay: \(\frac{AB}{3}=\frac{CD}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{AB}{3}=\frac{CD}{5}=\frac{AB+CD}{3+5}=\frac{56}{8}=7\)
\(\Rightarrow\orbr{\begin{cases}AB=7\cdot3=21\\CD=7\cdot5=35\end{cases}}\)
Vậy: \(AB=21cm\)
\(CD=35cm\)
a) \(x\left(x+4\right)\left(x-4\right)-\left(x^2-1\right)\left(x^2+1\right)\)
\(=x\left(x^2-16\right)-\left(x^4-1\right)\)
\(=x^3-16x-x^4+1\)
bạn ktra lại đề
b) \(x^4+2x^3+5x^2+4x-12\)
\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)
\(=\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
Gọi 2 số tự nhiên chẵn liên tiếp là : k ; k + 2 ( k chia hết cho 2)
Ta có :\(\left(k+2\right)^2-k^2=28\)
\(k^2+4k+4-k^2=28\)
\(\Rightarrow4k=24\)
\(\Rightarrow k=6\)
Vậy 2 số chẵn đó là : 6 ; 8
Ta có:
\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=\left(x-3\right)^3-\left(x-3\right)^3+6\left(x+1\right)^2\)
\(=6\left(x+1\right)^2\)
\(x^4+4x^2-5\)
\(=\left[\left(x^2\right)^2+2.x^2.2+2^2\right]-9\)
\(=\left(x^2+2\right)^2-9\)
\(=\left(x^2+2+3\right)\left(x^2+2-3\right)\)
\(=\left(x^2+5\right)\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x+1\right)\left(x-1\right)\)
\(P=2a+3b+\frac{1}{a}+\frac{4}{b}=a+2b+\left(a+\frac{1}{a}\right)+\left(b+\frac{4}{b}\right)\)
\(\ge5+2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{4}{b}}=5+2+4=11\)
Dấu "=" xảy ra <=> \(a=1;\)\(b=2\)
Vậy MIN P = 11 Khi a = 1; b = 2
Bài này là BĐT cosi
\(P=2a+3b+\frac{1}{a}+\frac{4}{b}\)
\(P=a+2b+\left(a+\frac{1}{a}\right)+\left(b+\frac{4}{b}\right)\)
\(P\ge5+2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{4}{b}}=5+2+4=11\)
Dấu "=" xảy ra khi a = 1/a <=> a = 1 ; b = 4/b <=> b = 2
Gọi chiều rộng của khu vườn ban đầu là a ( a>0 )
chiều dài của khu vườn ban đầu là 3a
Nếu tăng mỗi cạnh thêm 5m thì diện tích khu vườn tăng thêm 385m2, do đó ta có phương trình:
\(\left(a+5\right)\left(3a+5\right)-3a^2=385\)
<=> \(3a^2+20a+25-3a^2=385\)
<=> \(20a=360\)
<=> \(a=18\)\(\left(TMĐK\right)\)
Vậy: Chiều rộng của khu vườn là: 18m
Chiều dài của khu vườn là: 3*18 = 54m