K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2021

a) Gọi D,E,F lần lượt là tiếp điểm của (I;r) với MN,PQ,RS; T,U,V lần lượt là tiếp điểm của (I;r) với BC,AC,AB

Xét đường tròn (I;r) có hai tiếp tuyến tại D và U cắt nhau tại M \(\Rightarrow MD=MU\)(tính chất hai tiếp tuyến cắt nhau)

Tương tự, ta cũng có: \(SU=SF;\)\(RF=RT;\)\(QT=QE;\)\(PE=PV;\)\(NV=ND\)

Mà \(P_1=AM+AN+MN=AM+AN+MD+ND=AM+AN+MU+NV\)(1)

\(P_2=BP+BQ+PQ=BP+BQ+PE+QE=BP+BQ+PV+QT\)(2)

\(P_3=CS+CR+SR=CS+CR+SF+RF=CS+SR+RT+SU\)(3)

Từ (1), (2) và (3) \(\Rightarrow P_1+P_2+P_3=AM+AN+MU+NV+BP+BQ+PV+QT+CS+CR+RT+SU\)

\(=AM+AN+BP+BQ+CS+CR+\left(MU+SU\right)+\left(RT+QT\right)+\left(PV+NV\right)\)

\(=AM+AN+BP+BQ+CS+CR+MS+RQ+NP\)

\(=\left(AM+CS+MS\right)+\left(AN+BP+NP\right)+\left(BQ+QR+RC\right)\)

\(=AC+AB+BC=P\)

Vậy đẳng thức được chứng minh

27 tháng 11 2021

a, 700 góc nào bạn ? 

b, Vì AB là tiếp tuyến (O) => ^ABO = 900 

AO giao BC = K 

AB = AC ; OB = OC = R 

Vậy OA là đường trung trực đoạn BC 

Xét tam giác ABO vuông tại B, đường cao BK

Áp dụng định lí Pytago tam giác ABO vuông tại B 

\(AB=\sqrt{AO^2-BO^2}=\sqrt{16-4}=2\sqrt{3}\)cm 

Áp dụng hệ thức : \(BK.AO=BO.AB\Rightarrow BK=\frac{BO.AB}{AO}=\frac{4\sqrt{3}}{4}=\sqrt{3}\)cm 

Vì AO là đường trung trực => \(BC=2KB=2\sqrt{3}\)cm 

Chu vi tam giác ABC là :

 \(P_{ABC}=AB+AC+BC=2AB+BC=4\sqrt{3}+2\sqrt{3}=6\sqrt{3}\)cm 

27 tháng 11 2021

a, Gọi d : y = ax + b 

d // y = x + 5 <=> \(\hept{\begin{cases}a=1\left(1\right)\\b\ne5\end{cases}}\)

d đi qua A ( 2 ; 3 ) <=> \(2a+b=3\)(2) 

Thay (1) vào (2) ta được : \(2+b=3\Leftrightarrow b=1\)

Vậy d : y = x + 1 

DD
27 tháng 11 2021

Vì \(65\) là số lẻ nên \(2x+5y+1\) và \(2^{\left|x\right|-1}+y+x^2+x\) cũng là số lẻ.

mà \(2x+1\)lẻ 

\(\Rightarrow\)\(5y\) là số chẵn

\(\Rightarrow\)\(y\) là số chắn

\(2^{\left|x\right|-1}+x^2+x\)là só lẻ mà \(x^2+x=x\left(x+1\right)\) là tích 2 số tự nhiên liên tiếp nên là số chắn, \(y\) cũng là số chẵn

\(\Rightarrow\)\(2^{\left|x\right|-1}\) là số lẻ

\(\Rightarrow\)\(x=\pm1\).

Với \(x=1\)ta có: 

\(\left(5y+3\right)\left(y+3\right)=65\)

suy ra \(y=2\).

Tương tự với \(x=-1\)suy ra không có giá trị của \(y\)thỏa mãn. 

Vậy ta có nghiệm \(\left(x,y\right)=\left(1,2\right)\).

28 tháng 11 2021

Do VP là số lẻ

<=> 2x + 5y + 1 là số lẻ và 2|x|+y+x2+x2|x|+y+x2+x là số lẻ

<=> y chẵn và 2|x|+y+x(x+1)2|x|+y+x(x+1) là số lẻ 

=> 2|x|2|x| là số lẻ (do y chẵn và x(x+1) chẵn)

=> x = 0

PT <=> (5y+1)(1+y)=105(5y+1)(1+y)=105

<=> y = 4 (thử lại -> thỏa mãn)

KL: x = 0; y = 4

27 tháng 11 2021

còn cái nịt. haha

Nếu Lan là học trò của thầy Tiến thì CÒN CÁI NỊT, còn đúng cái nịt thôi.

@Nghệ Mạt

#cua