tìm x biết : căn x=x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/(b+c)+c/(a+d)=a^2+ad+c^2+bc/(a+d)(b+c)>=4(a^2+ad+c^2+bc)/(a+b+c+d)^2(BĐT 1/xy>=4/(x+y)^2
Tương tự rồi cộng lại ta có a/b+c+c/a+d+b/c+d+d/a+b>=4(a^2+b^2+c^2+d^2+ad+bc+ab+cd)/(a+b+c+d)^2=A
>>>Ta sẽ chứng minh A>=1/2 hay 2(a^2+b^2+c^2+d^2+ab+bc+cd+da)>=(a+b+c+d)^2
tương đương với a^2+b^2+c^2+d^2-2ac-2bd>=0<<->>(a-c)^2+(b-d)^2>=0(luôn đúng)(đpcm)
Dấu = xảy ra khi a=c và b=d
đây là Nesbit 4 số
nếu như gặp bđt Nesbit thì làm thế này:
đặt \(B=\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}+\frac{a}{a+b}\)
\(C=\frac{c}{b+c}+\frac{d}{c+d}+\frac{a}{d+a}+\frac{b}{a+b}\)
\(B+C=\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+d}{c+d}+\frac{d+a}{d+a}=4\)
\(A+B=\frac{a+b}{b+c}+\frac{b+c}{c+d}+\frac{c+d}{d+a}+\frac{d+a}{a+b}\ge4\)(theo cô si)
\(A+C=\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\)
\(\ge\frac{4\left(a+c\right)}{a+b+c+d}+\frac{4\left(b+d\right)}{a+b+c+d}=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)
\(\Rightarrow2A+B+C\ge8\Rightarrow2A+4\ge8\Rightarrow A\ge2\)
dấu bằng khi a=b=c=d
Đặt cái BT thứ nhất là √a thì cái BT sau là √(1/a),khi đó phương trình viết lại(a>0)
√a+√(1/a)=7/4;Bình phương 2 vế suy ra:
a+1/a+2=49/16>>>a+1/a=17/16>>>a^2+1=17/16a>>>16A^2+16-17=0(pt vô nghiệm)
Vậy phương trình vô nghiệm
đặt cái đề =A
Ta có A=\(\frac{a^2}{ac+2a^2}+\frac{b^2}{ab+2b^2}+\frac{c^2}{bc+2c^2}\)
áp dụng bất đẳng thức svác sơ ta có A>=\(\frac{\left(a+b+c\right)^2}{2\left(a^2+b^2+c^2\right)+ab+bc+ca}\) =\(\frac{2\left(a+b+c\right)^2}{4\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)}\) =\(\frac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(a^2+b^2+c^2\right)}\) (1)
áp dụng cô- si ta có \(3\left(a^2+b^2+c^2\right)>=\left(a+b+c\right)^2\) (2)
từ 1,2 suy ra đpcm( cậu tưj làm tiếp được chứ), GIÚP MÌNH CÂU MÌNH CHƯA LÀM ĐƯỢC VỚI
\(BĐT\Leftrightarrow\frac{c}{c+2a}+\frac{b}{a+2b}+\frac{a}{b+2c}\ge1\)
Câu a bạn tự làm nha!. Câu b : A=\(\frac{2x}{x-1}\)=\(\frac{2x-2}{x-1}\)-\(\frac{2}{x-1}\)=\(\frac{2.\left(x-1\right)}{x-1}\)-\(\frac{2}{x-1}\)=2-\(\frac{2}{x-1}\). Để A nguyên thì x-1 là ước của 2. Đến đó dễ rồi bạn tự làm nha. Học tốt!
mình làm được nè
cậu áp dụng bđt bu nhi a ta có\(\sqrt{\left(a+b\right)\left(a+c\right)}>=\left(\sqrt{ac}+\sqrt{ab}\right)\)
suy ra \(a+\sqrt{\left(a+b\right)\left(a+c\right)}>=a+\sqrt{ac}+\sqrt{ab}\) =\(\sqrt{a}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
cậu nghịc đảo lên rút căn a ra rồi suy ra điều phải chứng minh nhé, cậu ơi gíup mình được không
x={1,0} nha bạn
bạn giải cách làm giúp mình đc k , cảm ơn nhiều