1. Giải phương trình : 4( x - 3 )2 - ( 2x +1 )( x - 1 ) = 10
2. Chứng minh rằng với mọi A \(\varepsilon\)Z, ta có :
a) a2 + 2a +2 > 0
b) -a2 + 4a - 5 < 0
c) a( 2a - 2 ) - 2a( a2 + 1 ) chia hết cho 5
d) a2( a + 1 ) + 2a( a + 1 ) chia hết cho 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2+2x+2y+2=0\)
<=> \(\left(x+1\right)^2+\left(y+1\right)^2=0\)
<=> \(\hept{\begin{cases}x+1=0\\y+1=0\end{cases}}\)
<=> \(x=y=-1\)
\(Q=\left(-1+2\right)^{2017}+\left(-1+2\right)^{2018}=2\)
Ta có: \(x^2+y^2+2x+2y+2=0\)
\(\left(x^2+2.x.1+1^2\right)+\left(y^2+2.y.1+1^2\right)=0\)
\(\left(x+1\right)^2+\left(y+1\right)^2=0\)
Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Mà \(\left(x+1\right)^2+\left(y+1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases}}\)
\(Q=\left(x+2\right)^{2017}+\left(y+2\right)^{2018}\)
\(Q=\left(-1+2\right)^{2017}+\left(-1+2\right)^{2018}\)
\(Q=1^{2017}+1^{2018}\)
\(Q=1+1\)
\(Q=2\)
Vậy \(Q=2\)
Tham khảo nhé~
Ta có: \(a+b+c=9\)
\(\Rightarrow\left(a+b+c\right)^2=9^2\)
\(a^2+b^2+c^2+2ab+2bc+2ca=81\)
\(2.\left(ab+bc+ca\right)+141=81\)
\(2.\left(ab+bc+ca\right)=81-141\)
\(2.\left(ab+bc+ca\right)=-60\)
\(\Rightarrow ab+bc+ca=-60:2\)
\(ab+bc+ca=-30\)
Vậy \(ab+bc+ca=-30\)
Tham khảo nhé~
Ta có \(\left(a+b+c\right)^2=a^2+b^2+c^2+2.\left(ab+bc+ac\right)\)
Thay \(a+b+c=9;a^2+b^2+c^2=141\)vào biểu thức ta có
\(9^2=141+2.\left(ab+bc+ac\right)\)
\(\Rightarrow81=141+2.\left(ab+bc+ac\right)\)
\(\Rightarrow-60=2.\left(ab+bc+ac\right)\)
\(\Rightarrow ab+bc+ac=-30\)
Giả sử 2004 là hiệu các bình phương của hai số tự nhiên liện tiếp
Ta có: \(\left(n+1\right)^2-n^2=2004\)
\(\Leftrightarrow\left(n+1-n\right)\left(n+1+n\right)=2004\)
\(\Leftrightarrow2n+1=2004\)
\(\Leftrightarrow2n=2003\)
\(\Leftrightarrow n=\frac{2003}{2}\)
Suy ra: \(n\notinℤ\). Trái lại với giả thiết.
Vậy không tồn tại hai số tự nhiên liên tiếp nào mà hiệu các bình phương của chúng là 2004
a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\), \(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)
Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)
Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0
b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)
\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)
\(=n\left(n+1\right)\left(2n+1\right)\)
Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3
Đặt n=3k+1 và n=3k+2. Tự thế vài và CM
c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)
\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Dễ thấy đẳng thức trên chia hết cho 5
Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)
Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)
Và tích của hai số bất kì cũng chia hết cho 2
Vậy đẳng thức trên chia hết cho 3.4.2.5=120
Cậu cuối bn chứng minh cách tương tự. :)
a) \(12x^3+8x^2-3x-2=4x^2\left(3x+2\right)-\left(3x+2\right)\)
\(=\left(3x+2\right)\left(4x^2-1\right)=\left(3x+2\right)\left(2x-1\right)\left(2x+1\right)\)
b) \(18x^3+27x^2-2x-3=9x^2\left(2x+3\right)-\left(2x+3\right)\)
\(=\left(2x+3\right)\left(9x^2-1\right)=\left(2x+3\right)\left(3x-1\right)\left(3x+1\right)\)
c) \(8x^3+4x^2-34x+15=4x^2\left(2x-3\right)+8x\left(2x-3\right)-5\left(2x-3\right)\)
\(=\left(2x-3\right)\left(4x^2+8x-5\right)=\left(2x-3\right)\left(2x-1\right)\left(2x+5\right)\)