K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

\(A+5=x^2+4+y^2+1+\frac{1}{x}+\frac{1}{x+y}=4x+2y+...=\frac{x+y}{9}+\frac{1}{x+y}+\frac{1}{x}+\frac{x}{4}+\frac{17}{9}\left(x+y\right)+\frac{7}{4}x\ge\frac{65}{6}=>A\ge\frac{35}{6}\\ .\)Bài bất :)

8 tháng 8 2017

2/ \(\hept{\begin{cases}\frac{xy}{2}+\frac{5}{2x+y-xy}=5\\2x+y+\frac{10}{xy}=4+xy\end{cases}}\)

Đặt \(\hept{\begin{cases}\frac{xy}{2}=a\\2x+y-xy=b\end{cases}}\)

Thì ta có hệ:

\(\hept{\begin{cases}a+\frac{5}{b}=5\\b+\frac{5}{a}=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=5-\frac{5}{b}\left(1\right)\\b+\frac{5}{5-\frac{5}{b}}=4\left(2\right)\end{cases}}\)

\(\Rightarrow\left(2\right)\Leftrightarrow b^2-4b+4=0\)

\(\Leftrightarrow b=2\)

\(\Rightarrow a=\frac{5}{2}\)

\(\Rightarrow\hept{\begin{cases}\frac{xy}{2}=\frac{5}{2}\\2x+y-xy=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy=5\\2x+y=7\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\y=5\end{cases}or\orbr{\begin{cases}x=\frac{5}{2}\\y=2\end{cases}}}\)

áp dụng cô si ta...
Đọc tiếp

áp dụng cô si ta có:

+)\(\frac{a^5}{b^3}+\frac{a^3}{b}\ge\frac{2a^4}{b^2};\frac{b^5}{c^3}+\frac{b^3}{c}\ge\frac{2b^4}{c^2};\frac{c^5}{a^3}+\frac{c^3}{a}\ge\frac{2c^4}{a^2}\)

\(\Leftrightarrow\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\ge2\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)-\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)\)

+)\(\frac{a^4}{b^2}+a^2\ge\frac{2a^3}{b};\frac{b^4}{c^2}+b^2\ge\frac{2b^3}{c};\frac{c^4}{a^2}+c^2\ge\frac{2C^3}{a}\)

\(\Leftrightarrow\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\ge2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)-\left(a^2+b^2+c^2\right)\)

+)\(\frac{a^3}{b}+ab\ge2a^2;\frac{b^3}{c}+bc\ge2b^2;\frac{c^3}{a}+ca\ge2c^2\)

\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\left(a^2+b^2+c^2\right)+\left(a^2+b^2+c^2-ab-bc-ca\right)\ge\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\ge\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)+\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}-a^2-b^2-c^2\right)\ge\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)

\(\Leftrightarrow\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\ge\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)+\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}-\frac{a^3}{b}-\frac{b^3}{c}-\frac{c^3}{a}\right)\ge\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)\)

2
8 tháng 8 2017

Dảnh àk =))

8 tháng 8 2017

Cứ đăng đi - úng hộ ^^

8 tháng 8 2017

Ta có \(A^2=6+\sqrt{6+\sqrt{6+\sqrt{6+...}}}\)

\(\Leftrightarrow A^2=6+A\Leftrightarrow A^2-A-6=0\Leftrightarrow\left(A+2\right)\left(A-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}A=-2\\A=3\end{cases}}\) Mà \(A>0\) nên \(A=3\)

8 tháng 8 2017

\(\frac{a^3}{a^2+ab+b^2}\ge\frac{2a-b}{3}\)

\(\Leftrightarrow\left(a^2+ab+b^2\right)\left(2a+b\right)\le3a^3\)

\(\Leftrightarrow2a^3+a^2b+ab^2-b^3\le3a^3\)

\(\Leftrightarrow-a^3+a^2b+ab^2-b^3\le0\)

\(\Leftrightarrow a^3+b^3\ge a^2b+ab^2\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)

\(\Leftrightarrow a^2-ab+b^2\ge ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy \(\frac{a^3}{a^2+ab+b^2}\ge\frac{2a-b}{3}\)

8 tháng 8 2017

\(\sqrt{x^2+48}=4x-3+\sqrt{x^2+35}\Leftrightarrow\sqrt{x^2+48}-7=4x-4+\sqrt{x^2+35}-6\)

\(\Leftrightarrow\frac{x^2+48-49}{\sqrt{x^2+48}+7}=4x-4+\frac{x^2+35-36}{\sqrt{x^2+35}+6}\Leftrightarrow\frac{x^2-1}{\sqrt{x^2+48}+7}=4\left(x-1\right)+\frac{x^2-1}{\sqrt{x^2+35}+6}\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{\sqrt{x^2+48}+7}-4-\frac{x+1}{\sqrt{x^2+35}+6}\right)=0\)\(\Leftrightarrow x-1=0\Leftrightarrow x=1\).